

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

Alhuda university College

Course Description

Department of Electrical Engineering Technologies

2026 - 2025

1. Course Name:

DC Electrical Circuits

2. Course Code:

EET1101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

200 H / 8 ECTS

Course administrator's name (mention all, if more than one name)

Lect. Abdulsalam Mohammed Aboud

8. Course Objectives

- To develop a thorough understanding of the scientific principles that govern DC electrical circuits, including voltage, current, resistance, and power relationships.
- To apply scientific laws, such as Ohm's law and Kirchhoff's laws, to accurately analyze and solve electrical circuits.
- To explore the scientific properties and behavior of circuit components, including resistors and understand their impact on circuit performance.
- To enhance problem-solving skills by scientifically analyzing complex circuit configurations and proposing appropriate solutions.
- To investigate the scientific principles underlying circuit design and evaluation, including the selection of components based on scientific criteria and the assessment of circuit performance using scientific measurements.
- To study the scientific aspects of transient and steady-state behavior in circuits, including the analysis of DC and AC circuits, and interpret scientific data represented by voltage and current waveforms.
- To utilize scientific simulation tools and modeling techniques for scientific exploration, experimentation, and validation of circuit behavior.
- To emphasize the importance of adhering to scientific safety protocols when working with electrical circuits,

ensuring compliance with scientific guidelines and standards.

- To establish connections between scientific principles and practical scenarios, highlighting the scientific relevance of electrical circuits in real-world scientific applications and technological advancements.
- To foster scientific critical thinking skills in evaluating circuit configurations, proposing scientifically-based design improvements, and scientifically assessing limitations and potential risks associated with circuit operation.

9. Teaching and Learning Strategies

Two main strategies will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

- Theory-Based Lectures: Traditional classroom lectures are used to present theoretical concepts, principles, and theories related to electrical engineering. Professors or instructors explain complex ideas, provide examples, and engage students in discussions to foster understanding.
- Laboratory Experiments: Laboratory sessions are an integral part of electrical engineering education. Students engage in hands-on experiments, using equipment, instruments, and software tools to apply theoretical knowledge, analyze data, and gain practical skills. This helps them understand the practical aspects of electrical engineering and reinforces theoretical concepts.

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
Week 1	6	Understand fundamental concepts in electrical circuits (voltage, current, resistance, power, energy) and their relationships.	Introduction to DC circuits and circuit elements. Voltage, current, and resistance (Ohm's Law).	On-campus study	Quizzes
Week 2	6	Apply circuit analysis techniques (Ohm's law, Kirchhoff's laws, network theorems) to analyze and solve circuits.	Kirchhoff's Laws. Series and parallel circuits. Circuit analysis techniques: Node voltage method.	On-campus study	Reports
Week 3	6	Identify and describe characteristics of circuit components (resistors,	Circuit analysis techniques: Mesh current method. Superposition theorem.	On-campus study	Assignments

		capacitors, inductors, operational amplifiers).			
Week 4	6	Identify and describe characteristics of circuit components (resistors, capacitors, inductors, operational amplifiers).	Thevenin's theorem. Norton's theorem.	On-campus study	Quizzes
Week 5	6	Analyze series and parallel circuits, calculate equivalent resistances, and understand voltage/current division. Apply circuit theorems and techniques (superposition, nodal analysis, mesh analysis, source transformation) for circuit simplification and analysis.	Maximum power transfer theorem. Capacitors in DC circuits: Charging and discharging.	On-campus study	Reports
Week 6	6	Apply circuit theorems and techniques (superposition, nodal analysis, mesh analysis, source transformation) for circuit simplification and analysis.	Inductors in DC circuits: Transients and time constants. RL circuits.	On-campus study	Assignments
Week 7	6	Analyze transient and steady-state responses of circuits under DC and AC conditions.	Transients in RC circuits Capacitive and inductive reactance	On-campus study	Quizzes
Week 8	6	Analyze DC circuits using phasor notation, impedance, and understand reactance and complex power.	Transients in RL circuits Natural response and forced response	On-campus study	Reports
Week 9	6	Utilize circuit simulation software for modeling, simulating, and analyzing circuits.	Transients in LC circuits Resonance in series and parallel circuits	On-campus study	Assignments
Week 10	6	Utilize circuit simulation	Mesh analysis with dependent sources	On-campus study	Quizzes

		software for modeling, simulating, and analyzing circuits.			
Week 11	6	Understand electrical safety practices and ethical considerations in working with circuits.	Network theorems: Millman's theorem, reciprocity theorem	On-campus study	Reports
Week 12	6	Understand electrical safety practices and ethical considerations in working with circuits.	Introduction to three- phase circuits	On-campus study	Assignments
Week 13	6	Apply critical thinking and problem-solving skills to analyze and solve circuit problems.	Delta-star transformation	On-campus study	Quizzes
Week 14	6	Apply critical thinking and problem-solving skills to analyze and solve circuit problems.	Three-phase circuits: Delta and star connections	On-campus study	Reports
Week 15	6	Understand electrical safety practices and ethical considerations in working with circuits. Apply critical thinking and problem-solving skills to analyze and solve circuit problems.	Review and revision	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	3	10% (10)	2, 8, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

Fundamentals of Electric Circuits, C.K. Alexander and M.N.O Sadiku, McGraw-Hill Education

DC Electrical Circuit Analysis: A Practical Approach Copyright Year: 2020, dissidents.

https://www.coursera.org/browse/physical-science-and-engineering/electrical-engineering

Course Description Form

1. Course Name:

Digital Technologies

2. Course Code:

EET1102

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

Course administrator's name (mention all, if more than one name)

Asst. Lect. Mohammad Al-Ameen Abdul-Sattar Hameed

8. Course Objectives

- To develop a solid understanding of fundamental digital principles: The aim is to grasp the basic concepts of digital logic, number systems, Boolean algebra, and logic gates, providing a strong foundation for further studies in digital circuits and systems.
- To acquire practical skills in circuit design and implementation: The aim is to develop practical skills
 in designing, implementing, and testing digital circuits using laboratory equipment, integrated
 circuits, and various logic gates.
- To enhance problem-solving and analytical thinking abilities: The aim is to cultivate problem-solving skills by analyzing and simplifying complex digital circuits using Boolean algebra, truth tables, and logic simplification techniques.
- To foster teamwork and collaboration: The aim is to encourage collaboration through group projects, lab exercises, and discussions, fostering teamwork skills and the ability to work effectively in a digital design environment.
- To promote critical thinking and application of knowledge: The aim is to encourage critical thinking by applying theoretical knowledge to real-world scenarios, such as designing circuits to perform specific functions or solving digital logic problems using different logic gates and techniques.

9. Teaching and Learning Strategies

Two main strategies will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

- Theory-Based Lectures: Traditional classroom lectures are used to present theoretical concepts, principles, and theories related to electrical engineering. Professors or instructors explain complex ideas, provide examples, and engage students in discussions to foster understanding.
- Laboratory Experiments: Laboratory sessions are an integral part of electrical engineering education. Students engage in hands-on experiments, using equipment, instruments, and software tools to apply theoretical knowledge, analyze data, and gain practical skills. This helps them understand the practical aspects of electrical engineering and reinforces theoretical concepts.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to Laboratory Equipment and their Usage. Deriving Truth Tables for NOT, AND, and OR Gates using Switches.	Numerical Systems: Decimal, Binary, Octal, Hexadecimal.	On-campus study	Quizzes
Week 2	6	Deriving Truth Tables for NOT, AND, and OR Gates using Diodes and Transistors. Implementing NOR and NAND Gates using Diodes and Transistors.	Conversion between Decimal and Binary. Conversion between Decimal and Octal.	On-campus study	Reports
Week 3	6	Implementing and Verifying Exclusive OR (EXOR) and Exclusive NOR (EXNOR) Gates. Implementing De Morgan's First and Second Laws.	Conversion between Decimal and Hexadecimal. Conversion between Octal and Binary.	On-campus study	Assignments
Week 4	6	Constructing Basic Gates using NAND Gate IC7400. Constructing Basic Gates using NOR Gate IC7402.	Conversion between Hexadecimal and Binary. Binary Arithmetic: Addition and Subtraction.	On-campus study	Quizzes
Week 5	6	Constructing EXOR Gate using NAND Gate and again using NOR Gate. Half-Adder Circuit using Different Gates and NAND Gate again.	Binary Arithmetic: Using Complements for Subtraction. Introduction to Logic Gates: AND, OR, NOT.	On-campus study	Reports

Week 6	6	Half-Subtractor Circuit using Different Gates and NAND Gate again. Full-Adder Circuit using Different Gates and NAND Gate again.	Implementing Logic Gates with Switches. Implementing AND and OR Gates with Diodes and Resistors.	On-campus study	Assignments
Week 7	6	Full-Subtractor Circuit using Different Gates and NAND Gate again. Implementing Full-Adder and Full-Subtractor Circuits.	Implementing AND, OR, and NOT Gates with Transistors. Introduction to XOR and XNOR Gates.	On-campus study	Quizzes
Week 8	6	Implementing Half-Adder and Half-Subtractor Circuits.	Boolean Algebra: De Morgan's Theorems. Boolean Algebraic Relationships.	On-campus study	Reports
Week 9	6	Implementing Full-Adder and Full-Subtractor Circuits using ICs. Using Integrated Circuits for Addition and Subtraction.	Implementing Different Gates using NAND Gate. Implementing Different Gates using NOR Gate.	On-campus study	Assignments
Week 10	6	Introduction to Integrated Circuits (ICs). Implementing 4-bit Binary Addition using ICs.	Circuits with Different Gates: Truth Table and Logic Equation. Simplification of Logic Circuits with Boolean Algebra.	On-campus study	Quizzes
Week 11	6	Implementing 4-bit Binary Subtraction using ICs. Implementing Arithmetic Circuits using ICs.	Introduction to Karnaugh Map: 2-variable and 3- variable Maps. Transferring Truth Table to Karnaugh Map.	On-campus study	Reports
Week 12	6	Practice Exam and Preparation for Assessment.	Karnaugh Map: 4-variable Map. Examples of Digital Circuits with Karnaugh Map.	On-campus study	Assignments
Week 13	6	Implementing Half-Carry and Full-Carry Lookahead Adders. Introduction to Carry Lookahead Adder Circuits.	Simplification of Logic Circuits with Karnaugh Map: Don't Care Conditions. Logic Circuits with the Property of Folding and Interlocking.	On-campus study	Quizzes
Week 14	6	Implementing Multiplexers and Demultiplexers.	Arithmetic Circuits: Half- Adder and Full-Adder. Arithmetic Circuits: Half- Subtractor and Full- Subtractor.	On-campus study	Reports
Week 15	6	Design, Implementation, and Testing of a Complex Digital Circuit. Course review and feedback.	Review and Revision. Practice Exam and Preparation for Final Assessment.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

J. F. Wakerly, "Digital Design: Principles and Practices," 4th ed. Pearson Education, 2005.

T. L. Floyd and R. Fletcher, "Digital Fundamentals," 11th ed. Pearson, 2014.

1. Course Name:

Differential Mathematics

2. Course Code:

EET1104

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

Lect, Abdulsalam Mohammed Aboud

8. Course Objectives

The module aims for the Differential Mathematics course are as follows:

- 1. To develop a solid understanding of the fundamental concepts and techniques of differential calculus and their relevance in engineering contexts.
- 2. To apply differentiation techniques effectively in solving engineering problems, including optimization, motion analysis, and cost and revenue optimization.
- 3. To demonstrate proficiency in working with transcendental functions, such as exponential, logarithmic, and inverse trigonometric functions, and their application in engineering.
- 4. To introduce the basics of differential equations and their importance in modeling and analyzing engineering systems, including growth and decay phenomena and electrical circuits.

To enhance problem-solving skills by applying differential calculus concepts to real-world engineering scenarios, fostering critical thinking and analytical abilities.

9. Teaching and Learning Strategies

The module on Differential Mathematics with a focus on engineering applications implements a range of effective learning and teaching strategies to foster student understanding and engagement.

- Lectures introduce key concepts and problem-solving techniques, while interactive discussions facilitate student participation and real-world examples. Problem-solving sessions encourage active learning and collaboration, allowing students to apply differential calculus to engineering problems.
- Practical applications are emphasized through case studies and simulations, highlighting the relevance of differential mathematics in an engineering context. Computer-based tools, tutorials, and workshops provide additional support, while assessments and independent study promote feedback and deeper exploration.
- Guest speakers and practical projects bridge theory and practice, inspiring students and developing critical thinking skills.

By integrating these strategies, the module cultivates a comprehensive understanding of differential mathematics in engineering and equips students with the skills needed for success in their engineering careers.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to Differential Calculus. Limits and Continuity. Differentiation Rules: Power Rule, Product Rule, Quotient Rule, Chain Rule.	Introduction to Differential Calculus. Limits and Continuity. Differentiation Rules: Power Rule, Product Rule, Quotient Rule, Chain Rule.	On-campus study	Quizzes
Week 2	6	Derivatives of Trigonometric and Exponential Functions Derivatives of Logarithmic and Inverse Trigonometric Functions Implicit Differentiation	Derivatives of Trigonometric and Exponential Functions Derivatives of Logarithmic and Inverse Trigonometric Functions Implicit Differentiation	On-campus study	Reports
Week 3	6	Related Rates Optimization Problems in Engineering Curve Sketching: Critical Points, Inflection Points, Concavity	Related Rates Optimization Problems in Engineering Curve Sketching: Critical Points, Inflection Points, Concavity	On-campus study	Assignments
Week 4	6	L'Hôpital's Rule and Indeterminate Forms Linear Approximation and Differentials	L'Hôpital's Rule and Indeterminate Forms Linear Approximation and Differentials	On-campus study	Quizzes
Week 5	6	Applications of Differentiation in Engineering: Rates of Change, Velocity, Acceleration Motion Problems: Position, Velocity, and Acceleration Functions	Applications of Differentiation in Engineering: Rates of Change, Velocity, Acceleration Motion Problems: Position, Velocity, and Acceleration Functions	On-campus study	Reports
Week 6	6	Optimization of Engineering Systems: Maximum and Minimum Problems Optimization with Constraints	Optimization of Engineering Systems: Maximum and Minimum Problems Optimization with Constraints	On-campus study	Assignments
Week 7	6	Applications of Differentiation in Engineering: Marginal Analysis, Cost and Revenue Optimization	Applications of Differentiation in Engineering: Marginal Analysis, Cost and Revenue Optimization	On-campus study	Quizzes

		Linearization and Error Analysis	Linearization and Error Analysis		
Week 8	6	Implicit Differentiation and Higher Derivatives Related Rates with Engineering Applications	Implicit Differentiation and Higher Derivatives Related Rates with Engineering Applications	On-campus study	Reports
Week 9	6	Transcendental Functions: Derivatives of Exponential and Logarithmic Functions Applications of Transcendental Functions in Engineering	Transcendental Functions: Derivatives of Exponential and Logarithmic Functions Applications of Transcendental Functions in Engineering	On-campus study	Assignments
Week 10	6	Review of Differentiation Techniques Higher Derivatives and Acceleration in Engineering	Review of Differentiation Techniques Higher Derivatives and Acceleration in Engineering	On-campus study	Quizzes
Week 11	6	Taylor Series Expansion and Applications Linear Approximation and Estimation in Engineering	Taylor Series Expansion and Applications Linear Approximation and Estimation in Engineering	On-campus study	Reports
Week 12	6	Introduction to Differential Equations First-Order Differential Equations: Separable Equations, Linear Equations	Introduction to Differential Equations First-Order Differential Equations: Separable Equations, Linear Equations	On-campus study	Assignments
Week 13	6	Applications of Differential Equations in Engineering: Growth and Decay, RC Circuits	Applications of Differential Equations in Engineering: Growth and Decay, RC Circuits	On-campus study	Quizzes
Week 14	6	Higher-Order Differential Equations and Engineering Applications Spring-Mass Systems: Modeling and Analysis	Higher-Order Differential Equations and Engineering Applications Spring-Mass Systems: Modeling and Analysis	On-campus study	Reports
Week 15	6	Systems of Differential Equations in Engineering: Electrical Circuits, Control Systems Phase Plane Analysis: Stability and Classification Review and Exam Preparation	Systems of Differential Equations in Engineering: Electrical Circuits, Control Systems Phase Plane Analysis: Stability and Classification Review and Exam Preparation	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14			
	Report	14	10% (10)	14	LO # 1-14

Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessme	Total assessment				

12. Learning and Teaching Resources

K.A. Stroud and Dexter J. Booth, "Engineering Mathematics," 7th edition, Palgrave Macmillan, 2013.

E. Kreyszig, "Advanced Engineering Mathematics," 10th edition, Wiley, 2011.

https://www.coursera.org/browse/physical-science-and-engineering

Course Description Form

1. Course Name:

Engineering Workshops

2. Course Code:

EETC101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

Course administrator's name (mention all, if more than one name)

Lect. Abdulsalam Mohammed Aboud

8. Course Objectives

aims of the Electrical and Mechanical Workshop module are as follows:

- 1. To provide students with a comprehensive understanding of the principles and practices involved in electrical and mechanical workshops.
- 2. To familiarize students with the safety measures and precautions required in electrical and mechanical workshop environments.
- 3. To develop students' practical skills in using tools and equipment commonly used in electrical and mechanical workshops.
- 4. To introduce students to various electrical and mechanical processes, such as turning, filing, drilling, welding, and assembly.
- 5. To enhance students' knowledge of different types of machines, instruments, and materials used in electrical and mechanical workshops.
- 6. To provide hands-on experience and practical training in performing tasks related to electrical and mechanical workshop operations.
- 7. To develop students' problem-solving skills and critical thinking abilities through practical applications and troubleshooting scenarios.

- 8. To foster teamwork and effective communication skills by engaging students in group projects and collaborative workshop activities.
- 9. To instill an understanding of professional ethics and responsibility in the context of electrical and mechanical workshop practices.

To prepare students for future academic and professional pursuits in the fields of electrical engineering, mechanical engineering, and related disciplines.

9. Teaching and Learning Strategies

module may include:

- 1. Lectures: The module may include lectures delivered by the instructor to introduce and explain the theoretical concepts, principles, and procedures related to electrical and mechanical workshop practices. Lectures can provide an overview of the topics, highlight key points, and provide examples and case studies.
- 2. Practical Demonstrations: Hands-on practical demonstrations can be conducted by the instructor to show students the proper usage of tools and equipment, safety precautions, and step-by-step procedures for various workshop tasks. This allows students to observe and understand the practical aspects of the subject.
- 3. Laboratory Sessions: Laboratory sessions provide students with the opportunity to apply their theoretical knowledge and practice their skills in a controlled workshop environment. Students can work on assigned tasks, conduct experiments, perform measurements, and troubleshoot electrical and mechanical systems under the guidance of the instructor.
- 4. Group Discussions: Group discussions can be facilitated to encourage active participation and collaboration among students. Students can discuss and analyze case studies, share their experiences, and exchange ideas and perspectives on workshop-related topics. This promotes critical thinking, problem-solving, and peer learning.
- 5. Workshops and Work-Based Learning: Organizing workshops and incorporating work-based learning experiences can enhance the practical skills of students. This may involve site visits to real-world electrical and mechanical workshops, where students can observe professional practices, interact with industry experts, and gain hands-on experience in a professional setting.
- 6. Assignments and Projects: Assignments and projects can be assigned to students to further deepen their understanding of the subject matter. This may include tasks such as designing electrical installations, troubleshooting circuits, creating wiring diagrams, or conducting research on specific workshop-related topics. These assignments promote independent learning, research skills, and practical application of knowledge.

Assessments: Various forms of assessments can be used to evaluate students' understanding and progress. These may include written exams, practical assessments, laboratory reports, project presentations, and quizzes. Assessments provide feedback to students and allow them to demonstrate their knowledge, skills, and problem-solving abilities.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Principles of Industrial Safety in Electrical Workshops. Electrical shock protection and safety measures. Familiarization with tools used in electrical workshops. Power sources and their characteristics.	Principles of Industrial Safety in Electrical Workshops. Electrical shock protection and safety measures. Familiarization with tools used in electrical workshops. Power sources and their characteristics.	On-campus study	Quizzes

		Training on the use of a	Training on the use of a		
		multimeter for measuring wire	multimeter for measuring		
		sizes.	wire sizes.		
Week 2	6	Different Types of Welding Irons (with different capacities) and Spot Welding Proper usage techniques for different types of welding irons, including spot welding. Introduction to electric transformers and their types. Magnetic circuits in transformers.	Different Types of Welding Irons (with different capacities) and Spot Welding Proper usage techniques for different types of welding irons, including spot welding. Introduction to electric transformers and their types. Magnetic circuits in transformers.	On-campus study	Reports
Week 3	6	Electric Circuits and Transformer Operation. Opening transformers and gathering information from the old transformer for primary and secondary windings. Measurement of wire diameters for the transformer. Types of electric motors (single-phase and three-phase), example of shaded pole motor (small water pump motor).	Electric Circuits and Transformer Operation. Opening transformers and gathering information from the old transformer for primary and secondary windings. Measurement of wire diameters for the transformer. Types of electric motors (single-phase and three- phase), example of shaded pole motor (small water pump motor).	On-campus study	Assignments
Week 4	6	Electrical Installations and Types of Wiring (Surface and Concealed) Types of electrical installations (surface and concealed). Concealed wiring within pipes. Siemens wiring installation. Drawing a lighting installation circuit with control circuit. Practical exercise on wiring installation.	Electrical Installations and Types of Wiring (Surface and Concealed) Types of electrical installations (surface and concealed). Concealed wiring within pipes. Siemens wiring installation. Drawing a lighting installation circuit with control circuit. Practical exercise on wiring installation.	On-campus study	Quizzes
Week 5	6	Parallel Wiring of Two Lamps with a Switch and Socket Drawing a circuit diagram for two lamps wired in parallel with a switch and socket. Practical application of the circuit. Drawing the internal connection for a fluorescent lamp circuit. Replacing one lamp with a fluorescent lamp.	Parallel Wiring of Two Lamps with a Switch and Socket Drawing a circuit diagram for two lamps wired in parallel with a switch and socket. Practical application of the circuit. Drawing the internal connection for a fluorescent lamp circuit. Replacing one lamp with a fluorescent lamp.	On-campus study	Reports
Week 6	6	Drawing a Staircase Lamp (Two- Way Switch) Circuit	Drawing a Staircase Lamp (Two-Way Switch) Circuit	On-campus study	Assignments

		Drawing a circuit diagram for a staircase lamp with two-way switches. Practical application of the circuit.	Drawing a circuit diagram for a staircase lamp with two-way switches. Practical application of the circuit.		
Week 7	6	Introduction to Electrical Relays, Types, Uses, Thermal Overload Relays, Time Delay Relays Understanding electrical relays and their types. Applications and uses of relays. Thermal overload relays and time delay relays.	Introduction to Electrical Relays, Types, Uses, Thermal Overload Relays, Time Delay Relays Understanding electrical relays and their types. Applications and uses of relays. Thermal overload relays and time delay relays.	On-campus study	Quizzes
Week 8	6	Operation of Single-Face Motor with an Air Pick-Up and Push Button Operating a single-face motor using an air pick-up and push button. Operating the motor and changing its direction of rotation using relays and a time delay.	Operation of Single-Face Motor with an Air Pick-Up and Push Button Operating a single-face motor using an air pick-up and push button. Operating the motor and changing its direction of rotation using relays and a time delay.	On-campus study	Reports
Week 9	6	Introduction to Workshop Safety Discuss the importance of safety in workshop environments. Cover safety rules, personal protective equipment (PPE), emergency procedures, and hazardous material handling.	Introduction to Workshop Safety Discuss the importance of safety in workshop environments. Cover safety rules, personal protective equipment (PPE), emergency procedures, and hazardous material handling.	On-campus study	Assignments
Week 10	6	Turning Process and Instrumentation Measures Explain the basics of the turning process, including lathe machine components and operations. Discuss instrumentation measures used in turning, such as calipers, micrometers, and dial indicators.	Turning Process and Instrumentation Measures Explain the basics of the turning process, including lathe machine components and operations. Discuss instrumentation measures used in turning, such as calipers, micrometers, and dial indicators.	On-campus study	Quizzes
Week 11	6	Cutting Tools in Turning Introduce different types of cutting tools used in turning, including lathe tools, inserts, and tool holders. Explain tool geometry, selection criteria, and tool life considerations.	Cutting Tools in Turning Introduce different types of cutting tools used in turning, including lathe tools, inserts, and tool holders. Explain tool geometry, selection criteria, and tool life considerations.	On-campus study	Reports
Week 12	6	Practical Exercise - Horizontal Turning	Practical Exercise - Horizontal Turning	On-campus	Assignments

		Demonstrate horizontal turning on a lathe machine. Guide students in practicing turning operations, such as facing, turning, and grooving, using appropriate cutting tools.	Demonstrate horizontal turning on a lathe machine. Guide students in practicing turning operations, such as facing, turning, and grooving, using appropriate cutting tools.	study	
Week 13	6	Turning Different Shapes Teach students how to turn different shapes, such as tapers, chamfers, and threads, on the lathe machine. Cover techniques for creating internal and external threads and other complex shapes.	Turning Different Shapes Teach students how to turn different shapes, such as tapers, chamfers, and threads, on the lathe machine. Cover techniques for creating internal and external threads and other complex shapes.	On-campus study	Quizzes
Week 14	6	Introduction to Filing Process Introduce the filing process and its applications in workshop activities. Explain different types of files and their uses, including hand files, needle files, and rasp files.	Introduction to Filing Process Introduce the filing process and its applications in workshop activities. Explain different types of files and their uses, including hand files, needle files, and rasp files.	On-campus study	Reports
Week 15	6	Practical Exercise - Filing Process Guide students in practicing filing techniques on various materials. Demonstrate the correct filing motions, angles, and finishing methods for different surfaces and edges.	Practical Exercise - Filing Process Guide students in practicing filing techniques on various materials. Demonstrate the correct filing motions, angles, and finishing methods for different surfaces and edges.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	6, 14	LO #1, 2, 8 and 9
Formative	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

K.A. Stroud and Dexter J. Booth, "Engineering Mathematics," 7th edition, Palgrave Macmillan, 2013. E. Kreyszig, "Advanced Engineering Mathematics," 10th edition, Wiley, 2011.

https://www.coursera.org/browse/physical-science-and-engineering

1. Course Name:

Engineering Workshops

2. Course Code:

EETC101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

Prof. Dr. Faeq Hammad Antar

8. Course Objectives

aims of the Electrical and Mechanical Workshop module are as follows:

- 10. To provide students with a comprehensive understanding of the principles and practices involved in electrical and mechanical workshops.
- 11. To familiarize students with the safety measures and precautions required in electrical and mechanical workshop environments.
- 12. To develop students' practical skills in using tools and equipment commonly used in electrical and mechanical workshops.
- 13. To introduce students to various electrical and mechanical processes, such as turning, filing, drilling, welding, and assembly.
- 14. To enhance students' knowledge of different types of machines, instruments, and materials used in electrical and mechanical workshops.
- 15. To provide hands-on experience and practical training in performing tasks related to electrical and mechanical workshop operations.
- 16. To develop students' problem-solving skills and critical thinking abilities through practical applications and troubleshooting scenarios.
- 17. To foster teamwork and effective communication skills by engaging students in group projects and collaborative workshop activities.
- 18. To instill an understanding of professional ethics and responsibility in the context of electrical and mechanical workshop practices.

To prepare students for future academic and professional pursuits in the fields of electrical engineering, mechanical engineering, and related disciplines.

9. Teaching and Learning Strategies

module may include:

7. Lectures: The module may include lectures delivered by the instructor to introduce and explain the theoretical concepts, principles, and procedures related to electrical and mechanical workshop practices. Lectures can provide an overview of the topics, highlight key points, and provide examples and case

studies.

- 8. Practical Demonstrations: Hands-on practical demonstrations can be conducted by the instructor to show students the proper usage of tools and equipment, safety precautions, and step-by-step procedures for various workshop tasks. This allows students to observe and understand the practical aspects of the subject.
- 9. Laboratory Sessions: Laboratory sessions provide students with the opportunity to apply their theoretical knowledge and practice their skills in a controlled workshop environment. Students can work on assigned tasks, conduct experiments, perform measurements, and troubleshoot electrical and mechanical systems under the guidance of the instructor.
- 10. Group Discussions: Group discussions can be facilitated to encourage active participation and collaboration among students. Students can discuss and analyze case studies, share their experiences, and exchange ideas and perspectives on workshop-related topics. This promotes critical thinking, problem-solving, and peer learning.
- 11. Workshops and Work-Based Learning: Organizing workshops and incorporating work-based learning experiences can enhance the practical skills of students. This may involve site visits to real-world electrical and mechanical workshops, where students can observe professional practices, interact with industry experts, and gain hands-on experience in a professional setting.
- 12. Assignments and Projects: Assignments and projects can be assigned to students to further deepen their understanding of the subject matter. This may include tasks such as designing electrical installations, troubleshooting circuits, creating wiring diagrams, or conducting research on specific workshop-related topics. These assignments promote independent learning, research skills, and practical application of knowledge.

Assessments: Various forms of assessments can be used to evaluate students' understanding and progress. These may include written exams, practical assessments, laboratory reports, project presentations, and quizzes. Assessments provide feedback to students and allow them to demonstrate their knowledge, skills, and problem-solving abilities.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Principles of Industrial Safety in Electrical Workshops. Electrical shock protection and safety measures. Familiarization with tools used in electrical workshops. Power sources and their characteristics. Training on the use of a multimeter for measuring wire sizes.	Principles of Industrial Safety in Electrical Workshops. Electrical shock protection and safety measures. Familiarization with tools used in electrical workshops. Power sources and their characteristics. Training on the use of a multimeter for measuring wire sizes.	On-campus study	Quizzes
Week 2	6	Different Types of Welding Irons (with different capacities) and Spot Welding Proper usage techniques for different types of welding irons, including spot welding. Introduction to electric transformers and their types. Magnetic circuits in	Different Types of Welding Irons (with different capacities) and Spot Welding Proper usage techniques for different types of welding irons, including spot welding. Introduction to electric transformers and their types. Magnetic circuits in	On-campus study	Reports

		transformers.	transformers.		
Week 3	6	Electric Circuits and Transformer Operation. Opening transformers and gathering information from the old transformer for primary and secondary windings. Measurement of wire diameters for the transformer. Types of electric motors (single-phase and three-phase), example of shaded pole motor (small water pump motor).	Electric Circuits and Transformer Operation. Opening transformers and gathering information from the old transformer for primary and secondary windings. Measurement of wire diameters for the transformer. Types of electric motors (single-phase and three- phase), example of shaded pole motor (small water pump motor).	On-campus study	Assignments
Week 4	6	Electrical Installations and Types of Wiring (Surface and Concealed) Types of electrical installations (surface and concealed). Concealed wiring within pipes. Siemens wiring installation. Drawing a lighting installation circuit with control circuit. Practical exercise on wiring installation.	Electrical Installations and Types of Wiring (Surface and Concealed) Types of electrical installations (surface and concealed). Concealed wiring within pipes. Siemens wiring installation. Drawing a lighting installation circuit with control circuit. Practical exercise on wiring installation.	On-campus study	Quizzes
Week 5	6	Parallel Wiring of Two Lamps with a Switch and Socket Drawing a circuit diagram for two lamps wired in parallel with a switch and socket. Practical application of the circuit. Drawing the internal connection for a fluorescent lamp circuit. Replacing one lamp with a fluorescent lamp.	Parallel Wiring of Two Lamps with a Switch and Socket Drawing a circuit diagram for two lamps wired in parallel with a switch and socket. Practical application of the circuit. Drawing the internal connection for a fluorescent lamp circuit. Replacing one lamp with a fluorescent lamp.	On-campus study	Reports
Week 6	6	Drawing a Staircase Lamp (Two-Way Switch) Circuit Drawing a circuit diagram for a staircase lamp with two-way switches. Practical application of the circuit.	Drawing a Staircase Lamp (Two-Way Switch) Circuit Drawing a circuit diagram for a staircase lamp with two-way switches. Practical application of the circuit.	On-campus study	Assignments
Week 7	6	Introduction to Electrical Relays, Types, Uses, Thermal Overload Relays, Time Delay Relays Understanding electrical relays and their types. Applications and uses of relays.	Introduction to Electrical Relays, Types, Uses, Thermal Overload Relays, Time Delay Relays Understanding electrical relays and their types.	On-campus study	Quizzes

		Thermal overload relays and time delay relays.	Applications and uses of relays. Thermal overload relays and time delay relays.		
Week 8	6	Operation of Single-Face Motor with an Air Pick-Up and Push Button Operating a single-face motor using an air pick-up and push button. Operating the motor and changing its direction of rotation using relays and a time delay.	Operation of Single-Face Motor with an Air Pick-Up and Push Button Operating a single-face motor using an air pick-up and push button. Operating the motor and changing its direction of rotation using relays and a time delay.	On-campus study	Reports
Week 9	6	Introduction to Workshop Safety Discuss the importance of safety in workshop environments. Cover safety rules, personal protective equipment (PPE), emergency procedures, and hazardous material handling.	Introduction to Workshop Safety Discuss the importance of safety in workshop environments. Cover safety rules, personal protective equipment (PPE), emergency procedures, and hazardous material handling.	On-campus study	Assignments
Week 10	6	Turning Process and Instrumentation Measures Explain the basics of the turning process, including lathe machine components and operations. Discuss instrumentation measures used in turning, such as calipers, micrometers, and dial indicators.	Turning Process and Instrumentation Measures Explain the basics of the turning process, including lathe machine components and operations. Discuss instrumentation measures used in turning, such as calipers, micrometers, and dial indicators.	On-campus study	Quizzes
Week 11	6	Cutting Tools in Turning Introduce different types of cutting tools used in turning, including lathe tools, inserts, and tool holders. Explain tool geometry, selection criteria, and tool life considerations.	Cutting Tools in Turning Introduce different types of cutting tools used in turning, including lathe tools, inserts, and tool holders. Explain tool geometry, selection criteria, and tool life considerations.	On-campus study	Reports
Week 12	6	Practical Exercise - Horizontal Turning Demonstrate horizontal turning on a lathe machine. Guide students in practicing turning operations, such as facing, turning, and grooving, using appropriate cutting tools.	Practical Exercise - Horizontal Turning Demonstrate horizontal turning on a lathe machine. Guide students in practicing turning operations, such as facing, turning, and grooving, using appropriate cutting tools.	On-campus study	Assignments
Week 13	6	Turning Different Shapes Teach students how to turn different shapes, such as tapers, chamfers, and threads, on the	Turning Different Shapes Teach students how to turn different shapes, such as tapers, chamfers, and threads,	On-campus study	Quizzes

		lathe machine.	on the lathe machine.		
		Cover techniques for creating	Cover techniques for creating		
		internal and external threads	internal and external threads		
		and other complex shapes.	and other complex shapes.		
		Introduction to Filing Process	Introduction to Filing Process		
		Introduce the filing process and	Introduce the filing process		
		its applications in workshop	and its applications in		
Week	6	activities.	workshop activities.	On-campus	Domonto
14	6	Explain different types of files	Explain different types of files	study	Reports
		and their uses, including hand	and their uses, including hand		
		files, needle files, and rasp files.	files, needle files, and rasp		
			files.		
		Practical Exercise - Filing Process	Practical Exercise - Filing		
		Guide students in practicing	Process		
		filing techniques on various	Guide students in practicing		
Week		materials.	filing techniques on various	On-campus	
week 15	6	Demonstrate the correct filing	materials.	-	Assignments
15		motions, angles, and finishing	Demonstrate the correct filing	study	
		methods for different surfaces	motions, angles, and finishing		
		and edges.	methods for different surfaces		
			and edges.		

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	6, 14	LO #1, 2, 8 and 9
Formative	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

J. Smith and E. Johnson, "Electrical Engineering Workshop: Theory and Practice," .
D. Wilson and S. Thompson, "Mechanical Engineering Workshop: Principles and Applications," .

1. Course Name:

Arabic Language

2. Course Code:

MTU1001

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

50 H / 2 ECTS

7. Course administrator's name (mention all, if more than one name)

Dr. Basim Abd Hamid

8. Course Objectives

Course Learning Outcomes:

By the end of this course, the student will be able to:

- Identify common linguistic errors, understand their causes, and learn how to avoid them.
- Learn the rules for writing the tied $t\bar{a}'$ (\bar{a}) long $t\bar{a}'$ (\bar{a}) and open $t\bar{a}'$ (\bar{a}) correctly.
- Understand the rules for writing alif maq $^{\S ar{u}}$ rah (\mathcal{G}) and alif mamd $^{ar{u}}$ dah (\mathcal{G}) and use the solar and lunar letters accurately.
- Distinguish between Pad (ض) and Za' (a) and learn how to use them properly in writing.
- Apply the correct rules for writing hamzah (¿) based on standard linguistic principles.
- Recognize punctuation marks and use them properly in written texts.
- Understand the differences between nouns and verbs and distinguish between them in sentences.
- Learn how to use objects (maf^{'ū}l bihi, etc.) correctly in texts.
- Understand Arabic numerals and how to use them to express quantities.
- Avoid common language mistakes in practical contexts to reinforce grammar understanding and improve language skills.
- Study nūn and tanwīn, and understand the meanings and uses of prepositions in proper sentence

structure.

- Focus on the formal aspects of administrative writing and how to produce it in a correct and appropriate style.
- Identify the language of administrative discourse and understand its use in professional communication.
- Analyze examples of administrative correspondence to apply acquired concepts and skills effectively.

9. Teaching and Learning Strategies

Teaching and Learning Strategies in the Language Course

The teaching and learning strategies used in this course encompass a variety of approaches and techniques designed to enhance student learning. These include:

- Active Engagement: Students are encouraged to participate actively in lessons through group discussions and interactive activities.
- Collaborative Learning: Students work together on group tasks and projects, promoting teamwork and cooperation to achieve specific learning objectives.
- Practical Application: Opportunities are provided for students to apply acquired concepts and skills in practical, real-world contexts, fostering meaningful interaction with the subject matter.
- Use of Modern Technologies: Students benefit from the integration of technology into the learning process, such as using computers and the internet for research and self-directed learning.
- Immediate Feedback: Continuous and timely feedback is offered through both oral and written assessments, helping students improve their performance and develop their skills.
- Diverse Communication Methods: A range of instructional methods is employed—including explanatory lectures, group discussions, hands-on activities, and presentations—to accommodate different learning styles and needs.

By implementing these strategies, the course promotes student engagement, effective learning, and the development of comprehensive language knowledge and skills in an engaging and stimulating manner.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	2	مقدمة عن الأخطاء اللغوية التاء المربوطة والطويلة والتاء المفتوحة	مقدمة عن الأخطاء اللغوية – التاء المربوطة والطويلة والتاء المفتوحة	On-campus study	Quizzes
Week 2	2	قواعد كتابة الالف الممدودة والمقصورة – الحروف الشمسية والقمرية	قواعد كتابة الالف الممدودة والمقصورة — الحروف الشمسية والقمرية	On-campus study	Reports
Week 3	2	الضاد والظاء	الضاد والظاء	On-campus study	Assignments
Week 4	2	كتابة الهمزة	كتابة الهمزة	On-campus study	Quizzes

Week 5	2	علامات الترقيم	علامات الترقيم	On-campus study	Reports
Week 6	2	الاسم والفعل والتفريق بينهما	الاسم والفعل والتفريق بينهما	On-campus study	Assignments
Week 7	2	المفاعيل	المفاعيل	On-campus study	Quizzes
Week 8	2	العدد	العدد	On-campus study	Reports
Week 9	2	تطبيقات الأخطاء اللغوية الشائعة	تطبيقات الأخطاء اللغوية الشائعة	On-campus study	Assignments
Week 10	2	تطبيقات الأخطاء اللغوية الشائعة	تطبيقات الأخطاء اللغوية الشائعة	On-campus study	Quizzes
Week 11	2	النون والتنوين ـ معاني حروف الجر	النون والتنوين ـ معاني حروف الجر	On-campus study	Reports
Week 12	2	الجوانب الشكلية للخطاب الإداري	الجوانب الشكلية للخطاب الإداري	On-campus study	Assignments
Week 13	2	لغة الخطاب الإداري	لغة الخطاب الإداري	On-campus study	Quizzes
Week 14	2	نماذج من المراسلات الإدارية	نماذج من المراسلات الإدارية	On-campus study	Reports
Week 15	2	الاستعداد للأمتحان النهائي	الاستعداد للأمتحان النهائي	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative assessment	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Projects / Lab.	14			
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		_

12. Learning and Teaching Resources

ملزمة اللغة العربية (المعممة من وزارة التعليم العالي والبحث العلمي)

1. Course Name:

Human Rights and Democracy

2. Course Code:

MTU1006

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

50 H / 2 ECTS

7. Course administrator's name (mention all, if more than one name)

Dr. Basim Abd Hamid

8. Course Objectives

The module aims to:

- To provide students with a comprehensive understanding of the historical development of human rights and their significance in contemporary society.
- To familiarize students with the concept and characteristics of human rights, enabling them to analyze and evaluate various human rights issues and challenges.
- To explore the different generations of human rights, their evolution over time, and the implications for individuals and communities.
- To examine the role of human rights in ancient civilizations and Abrahamic religions, highlighting the contributions and influences of these historical contexts.

To investigate the international and regional recognition of human rights through the study of key charters, conventions, and declarations, enabling students to comprehend the global framework for human rights protection and promotion.

9. Teaching and Learning Strategies

The module will employ various learning and teaching strategies to enhance students' understanding and engagement. These strategies will include:

• Lectures: Traditional lectures will be delivered by the instructor to provide foundational knowledge and concepts related to human rights. Lectures will offer comprehensive explanations, historical

context, and theoretical frameworks.

- Discussions and Debates: Interactive discussions and debates will be conducted to encourage critical thinking and active participation. Students will have the opportunity to express their opinions, engage in thoughtful debates, and analyze different perspectives on human rights issues.
- Case Studies: Real-life case studies will be examined to illustrate the application of human rights principles in different contexts. Students will analyze and discuss these cases to develop problemsolving skills and gain a deeper understanding of the practical implications of human rights.
- Group Projects: Collaborative group projects will be assigned to promote teamwork and research skills. Students will work together on specific human rights topics, conduct research, and present their findings to the class. This approach fosters teamwork, communication, and research abilities.
- Guest Speakers: Inviting guest speakers, such as human rights activists, legal experts, or representatives from relevant organizations, will provide students with firsthand insights into the practical aspects of human rights work. Guest speakers can share their experiences, expertise, and engage in interactive discussions with students.
- Multimedia Resources: Utilizing multimedia resources such as videos, documentaries, and online
 platforms will enhance students' understanding and engagement with human rights topics. These
 resources can present real-life examples, testimonies, and visual representations to complement the
 theoretical aspects of the module.
- Critical Analysis and Reflection: Assignments and assessments will encourage students to critically analyze human rights issues, reflect on their personal perspectives, and evaluate the impact of human rights violations and advancements. This will develop their analytical skills and foster a deeper understanding of the complex nature of human rights.
- Independent Study: Students will be encouraged to engage in independent study, including reading relevant textbooks, scholarly articles, and reports. This will enable them to deepen their understanding of specific human rights topics, broaden their knowledge base, and develop self-directed learning skills.

Overall, these learning and teaching strategies aim to create an interactive and engaging learning environment, fostering critical thinking, active participation, and a deeper understanding of human rights principles and their practical application.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	2	Introduction to Human Rights (1 week).	Introduction to Human Rights (1 week).	On-campus study	Quizzes
Week 2	2	Historical Development of Human Rights.	Historical Development of Human Rights.	On-campus study	Reports
Week 3	2	Concept and Characteristics of Human Rights.	Concept and Characteristics of Human Rights.	On-campus study	Assignments
Week 4	2	Importance and Relevance of Human Rights.	Importance and Relevance of Human Rights.	On-campus study	Quizzes
Week 5	2	Human Rights in Ancient Civilizations (1 week).	Human Rights in Ancient Civilizations (1 week).	On-campus study	Reports
Week 6	2	Examination of Human Rights in Ancient Societies.	Examination of Human Rights in Ancient Societies.	On-campus study	Assignments

Week 7	2	Contributions of Ancient Civilizations to Human Rights Principles.	Contributions of Ancient Civilizations to Human Rights Principles.	On-campus study	Quizzes
Week 8	2	Human Rights in Abrahamic Religions (1 week).	Human Rights in Abrahamic Religions (1 week).	On-campus study	Reports
Week 9	2	Exploration of Human Rights in Judaism, Christianity, and Islam.	Exploration of Human Rights in Judaism, Christianity, and Islam.	On-campus study	Assignments
Week 10	2	Emphasis on the Personality of Prophet Muhammad (PBUH) and his Contribution to Human Rights.	Emphasis on the Personality of Prophet Muhammad (PBUH) and his Contribution to Human Rights.	On-campus study	Quizzes
Week 11	2	Human Rights in the Medieval and Modern Ages (1 week).	Human Rights in the Medieval and Modern Ages (1 week).	On-campus study	Reports
Week 12	2	Evolution of Human Rights during the Middle Ages and Modern Era.	Evolution of Human Rights during the Middle Ages and Modern Era.	On-campus study	Assignments
Week 13	2	Impact of Enlightenment and Renaissance on Human Rights.	Impact of Enlightenment and Renaissance on Human Rights.	On-campus study	Quizzes
Week 14	2	Contemporary International Recognition of Human Rights (1 week).	Contemporary International Recognition of Human Rights (1 week).	On-campus study	Reports
Week 15	2	Analysis of International Human Rights Instruments and Treaties.	Analysis of International Human Rights Instruments and Treaties.	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative assessment	Assignments	3	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Projects / Lab.	14			
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	4 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

حقوق الإنسان في العالم العربي: القضايا والتحديات"، تأليف: على حجازي وجمال شعت. الطبعة: الطبعة الثانية، العام: 2017. مبادئ حقوق الإنسان: المفاهيم والقضايا الحديثة"، تأليف: أحمد المجالي وغسان حمدان. الطبعة: الطبعة الأولى، العام: 2019.

1. Course Name:

Engineering Mechanics

2. Course Code:

EET1201

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

Prof. Dr. Faeq Hammad Antar

8. Course Objectives

module aims to:

- To introduce students to the fundamental concepts and principles of Mechanics Engineering.
- To develop students' ability to analyze and solve engineering problems related to statics, dynamics, and equilibrium of forces.
- To enhance students' critical thinking and problem-solving skills in the context of mechanical systems and components.
- To foster practical knowledge and hands-on experience through laboratory experiments and application of theoretical concepts.
- To prepare students for further studies or professional careers in engineering by providing a solid foundation in Mechanics Engineering principles and methodologies.

9. Teaching and Learning Strategies

will employ the following learning and teaching strategies:

• Lectures: Traditional lectures delivered by the instructor to present key concepts, theories, and principles of Mechanics Engineering. Lectures may include visual aids, demonstrations, and examples to enhance understanding and facilitate knowledge transfer.

- Laboratory Sessions: Practical hands-on laboratory sessions where students can apply theoretical concepts to real-world situations. Students may perform experiments, measurements, and data analysis, gaining practical skills and reinforcing their understanding of Mechanics Engineering principles.
- Problem-Solving Sessions: Interactive problem-solving sessions where students work individually or
 in groups to solve engineering problems related to mechanics. This strategy allows students to
 practice critical thinking, analytical skills, and the application of theoretical knowledge to practical
 scenarios.
- Tutorials: Small-group or one-on-one tutorials where students can seek clarification on difficult
 concepts, discuss challenging problems, and receive personalized guidance from the instructor.
 Tutorials provide opportunities for active engagement, individualized support, and deeper
 comprehension of the subject matter.

Group Projects: Collaborative group projects that require students to apply their knowledge of Mechanics Engineering to solve complex problems or design projects. This strategy encourages teamwork, communication skills, and the integration of multiple concepts and skills acquired throughout the module.

Week	Hours	Required Learning Outcomes	Unit or subject	Learning	Evaluation
			name	method	method
Week 1	4	Introduction to the Laboratory: Familiarization with the lab environment, safety guidelines, and equipment. Measurement Techniques: Practice using measurement tools such as rulers, calipers, and micrometers.	Introduction to Engineering Mechanics Statics and Dynamics Basic Concepts and Definitions	On-campus study	Quizzes
Week 2	4	Force Measurement: Conduct experiments to measure forces using load cells and force sensors. Resultant Forces: Calculate and analyze resultant forces in various systems.	Forces: Types, Characteristics, and Properties Force Vectors and Components Resultant and Equilibrium of Forces	On-campus study	Reports
Week 3	4	Equilibrium of Forces: Perform experiments to study the equilibrium of forces and verify the principles of static equilibrium. Moment of a Force: Measure and analyze the moment of a force using torque sensors.	Moments and Couples Moment of a Force - Moments and Equilibrium	On-campus study	Assignments
Week 4	4	Free-Body Diagrams: Practice creating free-body diagrams for different mechanical systems. Two-Dimensional Force Systems: Analyze two-dimensional force systems and calculate resultant forces and moments.	Free-Body Diagrams Equilibrium of Planar Forces Two-Dimensional Force Systems	On-campus study	Quizzes
Week	4	Centroids and Centers of Gravity:	Distributed Forces:	On-campus	Reports

5		Conduct experiments to determine centroids and centers of gravity for various objects and structures. Stability Analysis: Study the stability of objects in equilibrium and investigate the effects of shifting centroids.	Centroids and Centers of Gravity Centroid of Plane Areas Centroid of Composite Bodies	study	
Week 6	4	Moment of Inertia: Measure the moment of inertia of objects using moment of inertia apparatus. Parallel-Axis Theorem: Verify the parallel-axis theorem experimentally and calculate moments of inertia for composite bodies.	Moment of Inertia Moments of Inertia for Plane Areas Parallel-Axis Theorem	On-campus study	Assignments
Week 7	4	Truss Analysis: Analyze and test truss structures to determine internal forces and equilibrium conditions. Virtual Work Applications: Perform experiments to understand the principles of virtual work and its applications in engineering mechanics.	Principles of Virtual Work Equilibrium of Rigid Bodies Trusses and Frames	On-campus study	Quizzes
Week 8	4	Friction: Study different types of friction and measure coefficients of friction using friction apparatus. Equilibrium with Friction: Analyze systems involving frictional forces and determine equilibrium conditions.	Friction: Types and Laws Frictional Forces and Equilibrium Applications of Friction	On-campus study	Reports
Week 9	4	Kinematics: Perform experiments to study motion and displacement of objects, including rectilinear and angular motion. Velocity and Acceleration Analysis: Measure and analyze velocity and acceleration using motion sensors.	Kinetics: Forces and Motion Newton's Laws of Motion Linear and Angular Momentum	On-campus study	Assignments
Week 10	4	Kinetics: Study the relationship between forces and motion through experiments based on Newton's laws of motion. Impulse and Momentum: Measure impulse and momentum of objects in different scenarios and analyze the results.	Kinetics: Forces and Motion Newton's Laws of Motion Linear and Angular Momentum	On-campus study	Quizzes
Week 11	4	Work and Energy: Conduct experiments to explore work, energy, and power relationships in mechanical systems. Conservation of Mechanical Energy: Verify the conservation of mechanical energy through experimental measurements.	Work and Energy Principle of Work and Energy Conservation of Mechanical Energy	On-campus study	Reports
Week 12	4	Power and Efficiency: Calculate and analyze power and efficiency in mechanical systems using	Power and Efficiency Impulse and Momentum Impact and Collision	On-campus study	Assignments

		experimental data. Impact and Collision: Study the principles of impact and collision through experiments and observe the effects of different parameters.			
Week 13	4	Rotational Dynamics: Perform experiments to study rotational dynamics, including moment of inertia and angular momentum. Torque Measurement: Measure torque in different systems using torque sensors and analyze the relationship between torque and angular acceleration.	Rotational Dynamics Moment of Inertia for Rigid Bodies Angular Momentum and Torque	On-campus study	Quizzes
Week 14	4	Vibrations and Oscillations: Study free vibrations and harmonic motion through experiments with oscillating systems. Damping Analysis: Investigate damping effects and resonance phenomena in mechanical systems and analyze their implications.	Vibrations and Oscillations Free Vibrations and Harmonic Motion Damping and Resonance	On-campus study	Reports
Week 15	4	Review and Recapitulation: Review the practical concepts covered throughout the course. Problem-Solving Techniques: Apply problem-solving strategies to solve practical engineering mechanics problems and scenarios.	Review and Recapitulation Problem-Solving Techniques	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

Bedford and W. Fowler, "Engineering Mechanics: Statics," 5th ed. Upper Saddle River, NJ: Pearson, 2008.

R. C. Hibbeler, "Engineering Mechanics: Dynamics," 14th ed. Boston, MA: Pearson, 2015.

1. Course Name:

AC Electrical Circuits

2. Course Code:

EET1204

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

Asst. Lect. Abdulsalam Mohammed Aboud

8. Course Objectives

The module aims to:

- 1. To provide a comprehensive understanding of alternating current (AC), including its principles, characteristics, and waveform representation, as well as the significance of RMS value and average value in AC circuits.
- 2. To develop proficiency in working with phasor quantities, including their definition, representation in polar and rectangular forms, and the ability to perform arithmetic operations such as multiplication, division, addition, and subtraction.
- 3. To analyze resonance circuits, both in series and parallel configurations, in order to determine conditions for resonance, calculate key parameters such as current, voltage, impedance, phase angle, and frequency at resonance, and evaluate bandwidth and quality factor.
- 4. To investigate the impact of AC on different circuit configurations, ranging from resistance-only circuits to circuits with pure inductance or capacitance, as well as combinations of resistance, inductance, and capacitance. This includes determining phase angles between current and voltage for each circuit type. To explore the concept of power in AC circuits, encompassing the calculation of power in circuits with various components (resistance, inductance, capacitance) in series and parallel. Additionally, to comprehend active and reactive power, power factor, and techniques to improve power factor. The course will also cover the application of theories such as Norton's theorem, Thevenin's theorem, and impedance matching in AC circuits.

9. Teaching and Learning Strategies

The learning and teaching strategies for the AC Circuits module can vary depending on the specific educational institution and instructor. However, here are some common strategies that can be effective for teaching this module:

• Lectures: Conducting lectures to introduce and explain fundamental concepts, principles, and theories related to AC circuits. This can include providing clear explanations, using visual aids such as

slides or demonstrations, and engaging students through interactive discussions.

- Practical Demonstrations: Organizing practical demonstrations or laboratory sessions where students can observe and interact with real AC circuits. This hands-on experience allows them to apply theoretical knowledge, perform measurements, and analyze circuit behavior.
- Problem-Solving Sessions: Facilitating problem-solving sessions to enhance students' understanding of AC circuit analysis and calculation techniques. This involves presenting practice problems of increasing complexity and guiding students in step-by-step problem-solving strategies.
- Simulations and Virtual Labs: Utilizing computer simulations and virtual laboratory environments to provide interactive and immersive experiences. This allows students to simulate and analyze AC circuits, observe waveforms, and manipulate circuit parameters, reinforcing their understanding of concepts and principles.
- Group Discussions and Collaborative Learning: Encouraging group discussions and collaborative learning activities where students can actively engage with their peers. This can involve solving problems as a group, analyzing case studies, or engaging in debates and discussions to deepen their understanding of AC circuit concepts.
- Multimedia Resources: Incorporating multimedia resources such as online videos, interactive animations, and virtual tools to supplement lectures and provide additional visual representations of AC circuit phenomena.
- Assessments and Feedback: Implementing formative and summative assessments to evaluate students' understanding and progress. This can include quizzes, assignments, laboratory reports, and examinations. Providing timely feedback on assessments helps students identify areas of improvement and reinforces their learning.
- Self-Study Materials: Recommending textbooks, reference materials, and online resources for students to further explore AC circuit concepts independently. This promotes self-directed learning and allows students to deepen their understanding at their own pace.

By employing a combination of these strategies, instructors can create an engaging and effective learning environment for students studying AC circuits.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to laboratory equipment and safety guidelines The Oscilloscope: Comparison between peak and average values practically, calculating the form factor and crest factor (multiple exercises). Series and parallel connections of RC and RL circuits.	AC Quantities: Definition and characteristics of alternating current Generation and waveform representation of AC Relationships and definitions of RMS value, average value, and their significance Finding the form factor and crest factor for irregular waveforms with practical examples	On-campus study	Quizzes
Week 2	6	Phase angle measurement in series RLC circuits (multiple exercises). Phase angle measurement in parallel RLC circuits (multiple exercises).	Phasor Quantities: Definition of phasor quantities Representation of phasors in polar and rectangular forms Calculation of phase angle Operations on phasor quantities including multiplication, division, addition, and	On-campus study	Reports

			subtraction with practical		
			examples		
Week 3	6	Series resonance - Parallel resonance. Verification of Norton and Thevenin theories in AC current.	Resonance Circuits: Series and parallel resonance circuits Definition and conditions for resonance Calculation of current, voltage, impedance, phase angle, and frequency at resonance Determining bandwidth and quality factor Graphical representation of the relationship between inductive and capacitive reactance with frequency Example problems for both series and parallel resonance cases	On-campus study	Assignments
Week 4	6	Comparison between analog voltmeter and electronic voltmeter in measuring DC and AC voltage (multiple exercises). Achieving maximum power transfer in AC current - verifying the theory with its three possibilities.	Effect of Alternating Current on Circuits: Circuit with resistance only Circuit with pure inductance only Circuit with pure capacitance only Circuit with pure capacitance only Determining the phase angle between current and voltage for each circuit with examples.	On-campus study	Quizzes
Week 5	6	Power measurement using three voltmeters and ammeters (multiple exercises).	Effect of Alternating Current on Circuits: Circuit with resistance and inductance in series Circuit with resistance and capacitance in series Circuit with resistance, inductance, and capacitance in series Finding the relationship between current and voltage in the three cases, including phase angle and total circuit impedance, with practical examples.	On-campus study	Reports
Week 6	6	Power and power factor measurement using a wattmeter (multiple exercises).	Effect of Alternating Current on Circuits: Circuit with resistance and inductance in parallel Circuit with resistance and capacitance in parallel Circuit with resistance, inductance, and capacitance in parallel Finding the relationship between voltage and current in the three cases, including phase angle and	On-campus study	Assignments

			total circuit impedance, with		
			practical examples.		
Week 7	6	Improving power factor (multiple exercises).	Using the J-operator or the composite operator for finding total impedance, total admittance, current, voltage, and phase angle for resistors connected in series and parallel circuits, with example problemsolving.	On-campus study	Quizzes
Week 8	6	Voltage and current in three- phase circuits (star and delta connections).	Application of theories such as Norton's theorem, Thevenin's theorem, and impedance matching in alternating current circuits, with example problemsolving.	On-campus study	Reports
Week 9	6	Resistance measurement using a Wheatstone bridge (multiple exercises).	Power in AC circuits, including calculating power in circuits containing (resistance only, inductance only, capacitance only, resistance, inductance, and capacitance in series and parallel). Definition of active and reactive power and how to calculate them. Total apparent power (definition), drawing the power triangle, power factor, its definition, and its effect on AC circuits. How to improve power factor with practical examples.	On-campus study	Assignments
Week 10	6	Loaded voltage divider - Unloaded voltage divider.	Maximum power transfer theory in AC circuits, deriving the corresponding relationship with practical examples. Analysis of electric networks using the nodal voltage method, introduction, nodal voltages, number of nodal voltage equations, nodal voltage equations by inspection, common tolerance, transition tolerance. Practical examples of electric network analysis using the nodal method.	On-campus study	Quizzes
Week 11	6	Resistance measurement using an ammeter and voltmeter (multiple exercises).	Three-phase AC circuits, definition, and generation of three-phase AC current (single phase, two phases, three phases) with drawing the connections in star and delta configurations in three-phase AC circuits and the special relationships for calculating line current, phase	On-campus study	Reports

			assessed total 11'	<u> </u>	1
			current, total power, and line		
			power, phase power. Advantages		
			of each connection when used		
			with balanced and unbalanced		
			loads, with example problem-		
			solving.		
			Solving practical examples		
			regarding three-phase AC		
			current with delta and star		
			connections for balanced and		
			unbalanced loads.		
		Using amplifiers to measure	Methods of power measurement		
		high-value resistances	for three-phase loads:		
		(insulators) - (multiple	Wattmeter, how to connect it to		
		exercises).	the circuit to measure active		
		enereises).	power and calculate reactive		
			power and apparent power, with		
Week	6		an example problem. Power	On-campus	Assignments
12	U		measurement using a wattmeter	study	13001gmments
			_	_	
			and voltage, how to find total		
			power using this method in both		
			star and delta connections, using		
			two watt meters, and using three		
			watt meters.		
		Increasing the range of	Transient cases in circuits:		
		measurement for an ammeter	Transient cases in DC current,		
Week	_	- Calibration of the ammeter	circuits in transient cases (RLC,	On-campus	
13	6	using another device.	RC, RL circuits).	study	Quizzes
13			Transient AC currents: Transient	Study	
			AC currents in RLC, RC, RL		
			circuits, transient currents.		
		Increasing the range of	Self-inductance of a coil		
		measurement for a voltmeter -	(electromagnetic induction):		
		Calibration of the voltmeter.	Definition, special relationships		
			to find self-inductance of a coil,		
			mutual inductance between two		
			coils, relationships to find		
			mutual inductance based on the		
			type of coil connection,		
Week	6		including: a. Series-aiding	On-campus	Danarta
14	6		connection and b. Series-	study	Reports
			opposing connection.	, and the second	
			Transformers: Transformer		
			construction, drawing the		
			transformer, its characteristics,		
			operating principle, and special		
			relationships. Types of		
			transformers and problem-		
			solving.		
		Studying the time constant for	Growth and decay curves of		
		an inductive circuit (RL) -	current in an inductive circuit:		
Week	6	Studying the time constant for	Explanation of this circuit and its	On-campus	Assignments
15	U			study	1 1001511110110
10		l a canacitive circuit (RL)	i elleci on Di. Cliffeni General		
15		a capacitive circuit (RC).	effect on DC current, general relationships for growth and	-	

decay of current in the coil,	
drawing the current and	
calculating the time constant,	
problem-solving. Charging and	
discharging capacitors, including	
the use of capacitance in DC	
circuits, general relationship for	
charging and discharging	
capacitors, drawing the current,	
the effect of the time constant,	
and its calculation, problem-	
solving.	

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment				

12. Learning and Teaching Resources

J. W. Nilsson and S. A. Riedel, "Electric Circuits," 11th ed. Boston, MA: Pearson, 2018.

E. M. Purcell, "Electricity and Magnetism," 3rd ed. Cambridge, MA: Cambridge University Press, 2013.

Course Description Form

1. Course Name:

Integral Mathematics

2. Course Code:

EET1205

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

Asst. Lect. Abdulsalam Mohammed Aboud

8. Course Objectives

The module aims to:

- 1. To provide students with a comprehensive understanding of integration principles and techniques, including both indefinite and definite integration.
- 2. To equip students with the necessary skills to integrate various types of functions, such as trigonometric, inverse trigonometric, logarithmic, exponential, and hyperbolic functions.
- 3. To enable students to apply integration methods to solve practical problems and real-world applications, including finding areas, lengths of curves, surface areas, and volumes of solids.
- 4. To foster critical thinking and analytical skills by challenging students with a variety of integration problems and encouraging them to develop efficient problem-solving strategies.

To prepare students for advanced mathematical studies and future disciplines that require a strong foundation in integration, such as physics, engineering, economics, and computer science.

9. Teaching and Learning Strategies

The module will employ the following learning and teaching strategies

- 1. Lectures and Demonstrations: In-class lectures and demonstrations provide a structured approach to presenting the theoretical concepts of integration. The instructor can explain key concepts, demonstrate integration techniques, and provide examples to illustrate their application.
- 2. Problem-Solving Sessions: Regular problem-solving sessions allow students to actively engage with integration problems. These sessions can involve individual or group work, where students can practice applying integration techniques to solve a variety of problems and receive immediate feedback from the instructor.
- 3. Interactive Discussions: Engaging students in interactive discussions fosters critical thinking and deeper understanding of integration concepts. The instructor can facilitate discussions on integration strategies, real-world applications, and the connection between integration and other mathematical topics.
- 4. Practical Application Exercises: Assigning practical application exercises specific to electrical engineering helps students see the relevance of integration in their field of study. These exercises may involve solving engineering

problems related to circuit analysis, signal processing, or electromagnetic theory using integration techniques.

Technology-Assisted Learning: Utilizing technology tools, such as computer software or online resources, can enhance learning and visualization of integration concepts. Students can use mathematical software to perform numerical integrations, graph functions, and explore the graphical interpretations of integration results.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Indefinite Integration: Basic principles of integration, indefinite integrals, and integration rules for trigonometric functions.	Indefinite Integration: Basic principles of integration, indefinite integrals, and integration rules for trigonometric functions.	On-campus study	Quizzes
Week 2	6	Integration of Inverse Trigonometric Functions: Techniques for integrating inverse trigonometric functions.	Integration of Inverse Trigonometric Functions: Techniques for integrating inverse trigonometric functions.	On-campus study	Reports
Week 3	6	Integration of Logarithmic and Exponential Functions: Methods for integrating logarithmic and exponential functions.	Integration of Logarithmic and Exponential Functions: Methods for integrating logarithmic and exponential functions.	On-campus study	Assignments
Week 4	6	Integration of Hyperbolic Functions Techniques for integrating hyperbolic functions.	Integration of Hyperbolic Functions Techniques for integrating hyperbolic functions.	On-campus study	Quizzes
Week 5	6	Integration Methods Further integration methods, including integration by substitution and integration by parts.	Integration Methods Further integration methods, including integration by substitution and integration by parts.	On-campus study	Reports
Week 6	6	Definite Integration Introduction to definite integration, evaluating definite integrals, and applications in finding areas between curves.	Definite Integration Introduction to definite integration, evaluating definite integrals, and applications in finding areas between curves.	On-campus study	Assignments
Week 7	6	Applications of Definite Integration Calculating the length of curves and determining surface areas using definite integration.	Applications of Definite Integration Calculating the length of curves and determining surface areas using definite integration.	On-campus study	Quizzes
Week 8	6	Volumes of Solids Using integration to find volumes of solids, including solids of revolution and cross- sectional areas.	Volumes of Solids Using integration to find volumes of solids, including solids of revolution and cross- sectional areas.	On-campus study	Reports

Week 9	6	Applications in Physics Applying definite integration to solve physics problems involving motion, work, and fluid forces.	Applications in Physics Applying definite integration to solve physics problems involving motion, work, and fluid forces.	On-campus study	Assignments
Week 10	6	Techniques of Integration Review Reviewing and practicing integration techniques, including substitution, integration by parts, and trigonometric substitution.	Techniques of Integration Review Reviewing and practicing integration techniques, including substitution, integration by parts, and trigonometric substitution.	On-campus study	Quizzes
Week 11	6	Area Between Curves Exploring methods for finding the area between two curves and applying them to practical problems.	Area Between Curves Exploring methods for finding the area between two curves and applying them to practical problems.	On-campus study	Reports
Week 12	6	Length of Curves Calculating the length of curves using integration techniques.	Length of Curves Calculating the length of curves using integration techniques.	On-campus study	Assignments
Week 13	6	Surface Area Determining the surface area of three-dimensional objects using integration methods.	Surface Area Determining the surface area of three-dimensional objects using integration methods.	On-campus study	Quizzes
Week 14	6	Review and Exam Preparation Comprehensive review of the topics covered throughout the module and preparation for final exams.	Review and Exam Preparation Comprehensive review of the topics covered throughout the module and preparation for final exams.	On-campus study	Reports
Week 15	6	Assessment covering the concepts and applications of integral mathematics.	Assessment covering the concepts and applications of integral mathematics.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

"Calculus: Early Transcendentals" by James Stewart (8th Edition, Cengage Learning, 2015).

[&]quot;Advanced Engineering Mathematics" by Erwin Kreyszig (10th Edition, Wiley, 2011).

Course Description Form

1. Course Name:

Engineering Drawing

2. Course Code:

EETC102

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

Dr. Adel Hatim Nawar

8. Course Objectives

The module aims for the Basics of Engineering Drawing course are as follows:

- 1. To demonstrate proficiency in creating and interpreting engineering drawings: Develop the skills to create accurate and detailed engineering drawings using both manual drafting techniques and computer-aided drafting (CAD) software. Additionally, gain the ability to interpret and understand engineering drawings, including orthographic projections, sections, and assembly drawings.
- 2. To apply industry standards and practices: Understand and apply the relevant industry standards and practices for engineering drawing, such as dimensioning, tolerancing, and geometric dimensioning and tolerancing (GD&T). Ensure that drawings are compliant with applicable standards to facilitate effective communication and manufacturing processes.
- 3. To develop spatial visualization skills: Enhance your ability to visualize and mentally manipulate objects in three-dimensional space based on two-dimensional drawings. Strengthen your spatial awareness and improve your understanding of complex engineering designs.
- 4. To demonstrate effective communication of technical information: Acquire the skills to communicate technical information clearly and accurately through annotations, notes, and drawing presentations. Enhance your ability to convey design intent, dimensions, and specifications to other stakeholders, such as engineers, manufacturers, and clients.

To apply critical thinking and problem-solving skills in engineering drawing: Develop the ability to analyze and solve engineering drawing problems, such as identifying and resolving dimensional conflicts, addressing design issues, and ensuring proper fit and function of components. Apply critical thinking skills to evaluate and improve the quality and accuracy of engineering drawings.

9. Teaching and Learning Strategies

When it comes to learning and teaching engineering drawing using AutoCAD, there are several strategies that can be effective. Here are some recommendations:

- 1. Familiarize with the Software: Before diving into engineering drawing concepts, it's important to become familiar with the AutoCAD software. This includes understanding the user interface, basic tools, and commands. Start with introductory tutorials or online resources that cover the basics of AutoCAD.
- 2. Start with Fundamentals: Begin by teaching the fundamental concepts of engineering drawing, such as orthographic projection, isometric projection, dimensioning, and tolerancing. Explain the principles and techniques used in creating accurate and clear technical drawings.
- 3. Hands-on Practice: Engineering drawing is a practical skill, so provide ample opportunities for hands-on practice. Assign exercises and projects that require students to create different types of drawings using AutoCAD. Encourage them to explore and experiment with various tools and commands.
- 4. Step-by-Step Instructions: Break down complex drawing tasks into smaller, manageable steps. Provide step-by-step instructions and demonstrations using AutoCAD, showing students how to execute each step effectively. This approach helps students understand the workflow and build their confidence.
- 5. Visual Aids and Examples: Utilize visual aids, such as slides, diagrams, and examples, to reinforce concepts. Show real-world engineering drawings and explain how they were created using AutoCAD. Visual representations can enhance understanding and make abstract concepts more tangible.
- 6. Group Activities and Collaboration: Promote collaboration among students by assigning group activities or projects. This allows them to work together, share knowledge, and learn from one another. Encourage students to discuss their approaches and problem-solving techniques related to engineering drawing in AutoCAD.
- 7. Provide Feedback: Regularly provide constructive feedback on students' drawings. Highlight areas for improvement, suggest alternative methods, and point out common mistakes. This feedback loop is crucial for students to refine their skills and develop a deeper understanding of engineering drawing principles.
- 8. Stay Updated with AutoCAD Features: AutoCAD is regularly updated with new features and enhancements. Stay up to date with these changes to ensure you're teaching the latest tools and workflows. Familiarize yourself with new capabilities that can improve efficiency and accuracy in engineering drawing.
- 9. Online Resources and Communities: Encourage students to explore online resources, tutorials, and communities dedicated to AutoCAD and engineering drawing. There are numerous websites, forums, and YouTube channels that offer valuable content and support for learning AutoCAD.

Project-Based Learning: Incorporate project-based learning into the curriculum, where students can apply their engineering drawing skills to real-world scenarios. Assign projects that simulate industry-related tasks, such as creating architectural plans, mechanical assemblies, or electrical schematics using AutoCAD.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to Engineering Drawing: Importance and applications of engineering drawing. Drawing instruments and materials.	Introduction to Engineering Drawing: Importance and applications of engineering drawing. Drawing instruments and materials.	On-campus study	Quizzes

		Drawing standards and conventions.	Drawing standards and conventions.		
Week 2	6	Lines and Lettering Types of lines used in engineering drawing. Line weights and line quality. Techniques for freehand lettering and title block.	Lines and Lettering Types of lines used in engineering drawing. Line weights and line quality. Techniques for freehand lettering and title block.	On-campus study	Reports
Week 3	6	Geometric Construction Basic geometric shapes and their construction methods. Construction of angles, triangles, and polygons. Division of lines and angles.	Geometric Construction Basic geometric shapes and their construction methods. Construction of angles, triangles, and polygons. Division of lines and angles.	On-campus study	Assignments
Week 4	6	Orthographic Projection Introduction to orthographic projection. Multiview projection and views of an object. Drawing orthographic views of simple objects.	Orthographic Projection Introduction to orthographic projection. Multiview projection and views of an object. Drawing orthographic views of simple objects.	On-campus study	Quizzes
Week 5	6	Sectional Views Introduction to sectional views. Types of sectional views (full, half, offset). Drawing sectional views of objects.	Sectional Views Introduction to sectional views. Types of sectional views (full, half, offset). Drawing sectional views of objects.	On-campus study	Reports
Week 6	6	Dimensioning and Tolerancing Introduction to dimensioning and tolerancing. Types of dimensions (linear, angular, radial). Geometric dimensioning and tolerancing (GD&T).	Dimensioning and Tolerancing Introduction to dimensioning and tolerancing. Types of dimensions (linear, angular, radial). Geometric dimensioning and tolerancing (GD&T).	On-campus study	Assignments
Week 7	6	Auxiliary Views: Introduction to auxiliary views. Drawing auxiliary views	Auxiliary Views: Introduction to auxiliary views. Drawing auxiliary views to	On-campus study	Quizzes

		4 l 1	ala acceptance ala conservation		
		to show true shape and	show true shape and size		
		size of inclined surfaces.	of inclined surfaces.		
		Solving problems using	Solving problems using		
		auxiliary views.	auxiliary views.		
		Pictorial Drawings	Pictorial Drawings		
		Introduction to pictorial	Introduction to pictorial		
Week		drawings (isometric,	drawings (isometric,	On-campus	_
8	6	oblique, perspective).	oblique, perspective).	study	Reports
		Drawing isometric and	Drawing isometric and	5	
		oblique pictorial views.	oblique pictorial views.		
		Creating exploded views.	Creating exploded views.		
		Screw Threads and	Screw Threads and		
		Fasteners	Fasteners		
		Introduction to screw	Introduction to screw		
		threads.	threads.		
Week	6	Types of screw threads	Types of screw threads	On-campus	Assignments
9	U	and thread	and thread representation.	study	Assignments
		representation.	Drawing standard		
		Drawing standard	fasteners (bolts, nuts,		
		fasteners (bolts, nuts,	screws).		
		screws).			
		Assembly Drawings	Assembly Drawings		
		Introduction to assembly	Introduction to assembly		
XA71-		drawings.	drawings.	On sampus	
Week 10	6	Drawing exploded views	Drawing exploded views	On-campus study	Quizzes
10		and assembly details.	and assembly details.	Study	
		Bill of materials (BOM)	Bill of materials (BOM)		
		and part numbering.	and part numbering.		
		Introduction to CAD	Introduction to CAD		
		(Computer-Aided Design)	(Computer-Aided Design)		
		Overview of CAD software	Overview of CAD software		
Week	_	and its benefits.	and its benefits.	On-campus	D
11	6	Introduction to basic CAD	Introduction to basic CAD	study	Reports
		tools and commands.	tools and commands.		
		Creating simple drawings	Creating simple drawings		
		using CAD software.	using CAD software.		
		Isometric Projection	Isometric Projection		
		Introduction to isometric	Introduction to isometric		
		projection.	projection.		
Week	6	Drawing isometric views	Drawing isometric views	On-campus	Assignments
12	_	of simple objects.	of simple objects.	study	
		Solving problems using	Solving problems using		
		isometric projection.	isometric projection.		
		Electrical and Electronic	Electrical and Electronic	_	
Week	6	Symbols	Symbols	On-campus	Quizzes
13		Introduction to electrical	Introduction to electrical	study	
		ma oddedon to electrical	mirodaction to electrical	<u> </u>	<u> </u>

		and design the state of			
		and electronic symbols.	and electronic symbols.		
		Drawing basic electrical	Drawing basic electrical		
		and electronic circuits.	and electronic circuits.		
		Wiring diagrams and	Wiring diagrams and		
		schematic symbols.	schematic symbols.		
		Engineering Drawings for	Engineering Drawings for		
		Manufacturing	Manufacturing		
		Introduction to	Introduction to		
747 1	6	manufacturing drawings.	manufacturing drawings.	On-campus study	Reports
Week 14		Drawing detailed views	Drawing detailed views		
14		and dimensioning for	and dimensioning for		
		manufacturing.	manufacturing.		
		Introduction to tolerances	Introduction to tolerances		
		and fits.	and fits.		
		Review and Project Work	Review and Project Work		
		Review of course topics	Review of course topics		
Week	6	and concepts.	and concepts.	On-campus	Assismments
15	6	Project work involving the	Project work involving the	study	Assignments
		application of engineering	application of engineering		
		drawing principles.	drawing principles.		

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

D. A. Madsen, D. P. Madsen, and J. E. Briesacher, Engineering Drawing and Design, 5th ed., Clifton Park, NY: Delmar Cengage Learning, 2011.

F. E. Giesecke, A. Mitchell, H. C. Spencer, I. L. Hill, and J. T. Dygdon, Technical Drawing with Engineering Graphics, 15th ed., Upper Saddle River, NJ: Pearson, 2016.

https://www.coursera.org/browse/physical-science-and-engineering

Course Description Form

1. Course Name:

English Language (Beginner)

2. Course Code:

MTU1002

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

50 H / 2 ECTS

Course administrator's name (mention all, if more than one name)

Asst. Lect. Ahmed Khaled Bura'a

8. Course Objectives

The module aims for the Basics of Engineering Drawing course are as follows:

- 5. To demonstrate proficiency in creating and interpreting engineering drawings: Develop the skills to create accurate and detailed engineering drawings using both manual drafting techniques and computer-aided drafting (CAD) software. Additionally, gain the ability to interpret and understand engineering drawings, including orthographic projections, sections, and assembly drawings.
- 6. To apply industry standards and practices: Understand and apply the relevant industry standards and practices for engineering drawing, such as dimensioning, tolerancing, and geometric dimensioning and tolerancing (GD&T). Ensure that drawings are compliant with applicable standards to facilitate effective communication and manufacturing processes.
- 7. To develop spatial visualization skills: Enhance your ability to visualize and mentally manipulate objects in three-dimensional space based on two-dimensional drawings. Strengthen your spatial awareness and improve your understanding of complex engineering designs.
- 8. To demonstrate effective communication of technical information: Acquire the skills to communicate technical information clearly and accurately through annotations, notes, and drawing presentations. Enhance your ability to convey design intent, dimensions, and specifications to other stakeholders, such as engineers, manufacturers, and clients.

To apply critical thinking and problem-solving skills in engineering drawing: Develop the ability to analyze and solve engineering drawing problems, such as identifying and resolving dimensional conflicts, addressing design issues, and ensuring proper fit and function of components. Apply critical thinking skills to evaluate and improve the quality and accuracy of engineering drawings.

9. Teaching and Learning Strategies

When it comes to learning and teaching engineering drawing using AutoCAD, there are several strategies that can be effective. Here are some recommendations:

- 10. Familiarize with the Software: Before diving into engineering drawing concepts, it's important to become familiar with the AutoCAD software. This includes understanding the user interface, basic tools, and commands. Start with introductory tutorials or online resources that cover the basics of AutoCAD.
- 11. Start with Fundamentals: Begin by teaching the fundamental concepts of engineering drawing, such as orthographic projection, isometric projection, dimensioning, and tolerancing. Explain the principles and techniques used in creating accurate and clear technical drawings.
- 12. Hands-on Practice: Engineering drawing is a practical skill, so provide ample opportunities for hands-on practice. Assign exercises and projects that require students to create different types of drawings using AutoCAD. Encourage them to explore and experiment with various tools and commands.
- 13. Step-by-Step Instructions: Break down complex drawing tasks into smaller, manageable steps. Provide step-by-step instructions and demonstrations using AutoCAD, showing students how to execute each step effectively. This approach helps students understand the workflow and build their confidence.
- 14. Visual Aids and Examples: Utilize visual aids, such as slides, diagrams, and examples, to reinforce concepts. Show real-world engineering drawings and explain how they were created using AutoCAD. Visual representations can enhance understanding and make abstract concepts more tangible.
- 15. Group Activities and Collaboration: Promote collaboration among students by assigning group activities or projects. This allows them to work together, share knowledge, and learn from one another. Encourage students to discuss their approaches and problem-solving techniques related to engineering drawing in AutoCAD.
- 16. Provide Feedback: Regularly provide constructive feedback on students' drawings. Highlight areas for improvement, suggest alternative methods, and point out common mistakes. This feedback loop is crucial for students to refine their skills and develop a deeper understanding of engineering drawing principles.
- 17. Stay Updated with AutoCAD Features: AutoCAD is regularly updated with new features and enhancements. Stay up to date with these changes to ensure you're teaching the latest tools and workflows. Familiarize yourself with new capabilities that can improve efficiency and accuracy in engineering drawing.
- 18. Online Resources and Communities: Encourage students to explore online resources, tutorials, and communities dedicated to AutoCAD and engineering drawing. There are numerous websites, forums, and YouTube channels that offer valuable content and support for learning AutoCAD.

Project-Based Learning: Incorporate project-based learning into the curriculum, where students can apply their engineering drawing skills to real-world scenarios. Assign projects that simulate industry-related tasks, such as creating architectural plans, mechanical assemblies, or electrical schematics using AutoCAD.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	2	Hello!	Hello!	On-campus study	Quizzes
Week 2	2	Your world.	Your world.	On-campus study	Reports
Week 3	2	All about you.	All about you.	On-campus study	Assignments
Week 4	2	Family and friends.	Family and friends.	On-campus	Quizzes

				study	
Week 5	2	The way I live.	The way I live.	On-campus study	Reports
Week 6	2	Every day	Every day	On-campus study	Assignments
Week 7	2	My favourites.	My favourites.	On-campus study	Quizzes
Week 8	2	Where I live.	Where I live.	On-campus study	Reports
Week 9	2	Times past.	Times past.	On-campus study	Assignments
Week 10	2	We had a great time!	We had a great time!	On-campus study	Quizzes
Week 11	2	I can do that!	I can do that!	On-campus study	Reports
Week 12	2	Please and thank you.	Please and thank you.	On-campus study	Assignments
Week 13	2	Here and now.	Here and now.	On-campus study	Quizzes
Week 14	2	It's time to go!	It's time to go!	On-campus study	Reports
Week 15	2	Getting to know you.	Getting to know you.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

Soars, J., Soars, L. (2014). New Headway Plus: Beginner Student's Book. United Kingdom: Oxford University Press.

Soars, J., Soars, L. (2006). New Headway Plus: Pre-intermediate. United Kingdom: Oxford University Press.

Course Description Form

1. Course Name:

Computer Principles

2. Course Code:

MTU1004

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

75 H / 3 ECTS

7. Course administrator's name (mention all, if more than one name)

Asst. Lect. Mohammad AlAmeen Abdul-Sattar Hameed

8. Course Objectives

The module aims to:

- 1. To introduce students to the fundamental concepts of computers, including their evolution, advantages, and classification based on purpose, size, and data type.
- 2. To familiarize students with the physical components of a computer and software entities, highlighting their roles in computer operations.
- 3. To promote awareness of computer security, ethics, and intellectual property rights, emphasizing the types of violations and measures for protection.
- 4. To provide an overview of operating systems, their functions, classifications, and examples, with a focus on the Windows 11 operating system and its desktop components.
- 5. To equip students with practical knowledge of computer usage and maintenance, covering file organization, software installation, common computer settings, and promoting responsible practices.

These aims and indicative contents aim to achieve a comprehensive understanding of computer fundamentals, security, operating systems, and proper computer usage and maintenance.

9. Teaching and Learning Strategies

The learning and teaching strategies for the module on Computer Principles and operating systems can include:

- 1. Lectures and Presentations: The instructor can deliver lectures and presentations to introduce and explain key concepts, theories, and principles related to computer fundamentals and operating systems. This can help students develop a foundational understanding of the subject matter.
- 2. Practical Demonstrations: Hands-on practical demonstrations can be conducted to illustrate the usage of different computer components, software applications, and operating system functionalities. This can enhance students' understanding of the practical aspects of computer systems.
- 3. Group Discussions and Collaborative Learning: Engaging students in group discussions and collaborative learning activities can promote active participation and deeper understanding. Students can discuss and analyze case studies, real-life examples, and scenarios related to computer fundamentals and operating systems.
- 4. Laboratory Exercises: Practical laboratory exercises can provide students with opportunities to apply their knowledge and skills in a controlled environment. They can work on computer hardware, software installations,

operating system configurations, and troubleshooting tasks, allowing them to gain practical experience.

Assignments and Projects: Assignments and projects can be assigned to students to encourage independent learning and critical thinking. They can involve research, analysis, problem-solving, and the application of concepts learned in the module. This can help students develop their skills and deepen their understanding.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	3	Introduction to Computer Fundamentals. Concept of a Computer.	Practical examples of browsing, opening, and closing windows and dialog boxes, and the proper way to interact with the keyboard, cursor, and other devices. Computer Fundamentals: Concept of a Computer, Stages of the Computer Life Cycle, Evolution of Computer Generations.	On-campus study	Quizzes
Week 2	3	Stages of the Computer Life Cycle. Evolution of Computer Generations.	Practical examples of customization, working with icons, and changing screen resolution. Computer Advantages and Applications, Classification of Computers based on Purpose, Size, and Data Type.	On-campus study	Reports
Week 3	3	Advantages of Computers and their Applications. Classification of Computers based on Purpose, Size, and Data Type.	Training the student on creating a new user, maximizing windows, displaying the keyboard, and familiarizing with the physical components of the computer. Computer Components: Physical Components of a Computer, Software Entities.	On-campus study	Assignments
Week 4	3	Computer Components: Physical Components of a Computer. Computer Components: Software Entities.	Training the student on dealing with computer software licenses, their types, and handling original software sources. Your Personal Computer: Concept of Computer Security and Software Licenses.	On-campus study	Quizzes
Week 5	3	Personal Computers. Concept of Computer Security and Software Licenses.	Training the students in computer security. Computer Safety & Software Licenses, Computer Safety, and Security.	On-campus study	Reports
Week 6	3	Software Licenses: Types and Importance. Intellectual Property.	Training the student in computer privacy. Ethics in the Digital World, Types of Violations, Computer Security, Computer Privacy.	On-campus study	Assignments
Week 7	3	Software Licenses: Types and Importance.	Training the student on electronic hacking and its types, types and	On-campus study	Quizzes

		Intellectual Property. Cyber Intrusions and	characteristics of viruses, how to create a computer backup for protection. Software Licenses: Types and Importance, Intellectual Property, Cyber Intrusions and Malicious Software, Steps for Protecting Against Hacking, Harmful Effects of Computers on Health. Training the student on operating		
Week 8	3	Malicious Software. Steps for Protecting Against Hacking.	systems, configuring, and partitioning the internal and external hard disk. Operating Systems: Definition, Functions, Objectives, Classification, Examples of Different Operating Systems.	On-campus study	Reports
Week 9	3	Health Effects of Computers. Introduction to Operating Systems.	Training the student in installing Windows 7. Operating Systems: Windows 11.	On-campus study	Assignments
Week 10	3	Functions and Objectives of Operating Systems. Classification of Operating Systems.	Training the student on Start Menu commands, the taskbar, creating a file, and saving it with the student's name on the desktop. Interacting with windows, scrollbars, and using the function keys (F1, F2,, F12) on the keyboard. Desktop Components: Start Menu, Taskbar.	On-campus study	Quizzes
Week 11	3	Examples of Different Operating Systems. Windows 11 Operating System.	Creating a folder with a specific name and training on renaming, hiding, recovering, deleting, and viewing its path. Folders and Files, Icons.	On-campus study	Reports
Week 12	3	Desktop Components. Start Menu and Taskbar.	Training the student in performing operations on windows, desktop wallpaper. Performing Operations on Windows, Desktop Wallpapers.	On-campus study	Assignments
Week 13	3	Folders and Files. Icons and Operations on Windows.	Training the student on using the Control Panel. Control Panel: Windows Control Panel, Categories.	On-campus study	Quizzes
Week 14	3	Desktop Wallpapers. Control Panel: Categories and Functions. File Organization and Maintenance.	Training the student on uninstalling and reinstalling a specific program. From Control Panel: Defragmenting Files Inside the Computer, Installing and Uninstalling Programs.	On-campus study	Reports
Week 15	3	Installing and Uninstalling Programs. Common Computer Settings: Printer Management, Time and Date Settings, Primary Disk Maintenance.	Training the student on common computer settings, installing the printer, managing time and date, and maintaining primary disks (Partitions C, D, E, F). Common Computer Settings: Printer Management, Time and Date Settings, Primary Disk Maintenance.	On-campus study	Assignments

		Time/Number	Weight (Marks)	Week Due	Relevant Learning
As		·	, ,		Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment		100% (100 Marks)		

12. Learning and Teaching Resources

R. E. Bryant and D. R. O'Hallaron, "Computer Systems: A Programmer's Perspective," 2019.

G. Brookshear and D. Brylow, "Computer Science: An Overview," 2020.

Course Description Form

1. Course Name:

DC Generators

2. Course Code:

EET2101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the DC Generators module are:

- 1. To provide a comprehensive understanding of magnetic circuits and their role in DC generators.
- 2. To explain the principles of electromechanical energy conversion in DC machines.
- 3. To introduce the basic concepts and functions of DC machines.
- 4. To familiarize students with the terms and types of armature windings used in DC generators.
- 5. To explore the production of induced electromotive force (EMF) in DC generators and the factors

influencing it.

- 6. To analyze the effects of armature reaction and methods to improve commutation in DC generators.
- 7. To examine the different types of DC generators, including self-excited, series-wound, shuntwound, and compound-wound generators.
- 8. To study the characteristics of shunt, series, and compound-wound generators and understand their losses and efficiency.

To explore the parallel operation of shunt generators, including load division and voltage division in series generator parallels.

9. Teaching and Learning Strategies

The DC Generators module can be effectively taught using a combination of learning and teaching strategies, including:

- 1. Lectures: Conducting lectures to deliver theoretical concepts and principles related to DC generators. This allows students to gain foundational knowledge and understanding of the subject matter.
- 2. Practical Demonstrations: Organizing practical demonstrations to illustrate the operation and components of DC generators. This hands-on approach helps students visualize and experience the concepts in a real-world setting.
- 3. Problem-Solving Exercises: Assigning problem-solving exercises and numerical problems to enhance students' analytical skills. This enables them to apply the learned concepts and principles to solve practical problems related to DC generators.
- 4. Case Studies: Presenting case studies or real-life examples of DC generator applications in different industries. This helps students relate the theoretical concepts to practical scenarios and understand the relevance of DC generators in various contexts.
- 5. Group Discussions and Peer Learning: Facilitating group discussions and peer learning activities to encourage active engagement and collaboration among students. This allows for the exchange of ideas, perspectives, and problem-solving approaches, fostering a deeper understanding of the subject matter. Laboratory Experiments: Conducting laboratory experiments where students can interact with DC generator setups, measure electrical parameters, and observe the generator's behavior. This hands-on experience enhances their practical skills and reinforces theoretical concepts.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to DC Generators Overview of DC generators and their applications. Comparison between AC and DC generators. Basic components and construction of DC generators.	Introduction to Laboratory Equipment and Safety Familiarization with the laboratory equipment used in DC generator experiments. Introduction to lab safety protocols and guidelines.	On-campus study	Quizzes
Week 2	6	Magnetic Circuits and Magnetic Field Analysis Magnetic circuits and their characteristics. Magnetic field analysis in DC generators. Magneto motive force (MMF) and magnetic field strength.	Magnetic Circuits and Magnetic Field Analysis Measurement of magnetic field strength using a gauss meter. Construction and analysis of magnetic circuits using magnetic materials.	On-campus study	Reports
Week	6	Permeability, Reluctance, and	Characteristics of Permanent	On-campus	Assignments

3		BH Curve	Magnets	study	1
5		Permeability and reluctance in	Measurement of magnetic field	study	
		magnetic circuits.	strength and flux density of		
		BH curve, hysteresis, and eddy	permanent magnets.		
		currents.	Investigation of the relationship		
		Practical applications of	between magnet strength and		
		permanent magnets in DC	magnetic field properties.		
		generators.			
i		Electromechanical Energy	Construction and Testing of		
		Conversion	Armature Windings		
		Principles of electromechanical	Hands-on construction of		
Week	_	energy conversion in DC machines.	different types of armature	On-campus	0
4	6	Faraday's law of	windings. Measurement of armature	study	Quizzes
		electromagnetic induction.	winding resistance using a	, and the second	
		Concept of armature winding	multimeter.		
		and coil pitch.	marimeter.		
		Armature Windings and	Commutation Analysis and		
		Commutation	Improvement Techniques		
		Introduction to armature	Observation and analysis of		
		windings and their types.	commutation issues in a DC		
Week	6	Single-layer and double-layer	generator setup.	On-campus	Reports
5	O	windings.	Implementation of	study	reports
		Lap winding and wave winding	commutation improvement		
		configurations.	techniques, such as interpoles		
i			or compensating windings.		
		Multiplex Winding and	DC Generator Voltage Build-Up		
		Commutation Methods	Measurement of voltage build-		
		Multiplex winding and	up characteristics in a self-		
Week		equalizer rings.	excited DC generator.	On-campus	
6	6	Dummy coils and armature	Analysis of factors affecting	study	Assignments
		winding resistance. Commutation process and	voltage build-up and its impact on generator performance.		
		_	on generator performance.		
		methods for improving commutation.			
		Armature Reaction and	Characteristics of Shunt		
		Compensating Windings	Generators		
		Armature reaction and its	Measurement of key		
Mosla		effects on DC generator	parameters and characteristics	On compus	
Week 7	6	operation.	of a shunt generator	On-campus	Quizzes
′		Demagnetizing and cross-	Calculation of efficiency, losses,	study	
		magnetizing AT per pole.	and conditions for maximum		
		Compensating windings and	efficiency		
		interpoles.	Characterist' C C :		
		DC Generator Voltage Build-Up	Characteristics of Series		
		Voltage build-up in self-excited DC generators.	Generators Measurement of key		
Week		Analysis of factors influencing	parameters and characteristics	On-campus	
8	6	voltage build-up.	of a series generator.	study	Reports
		voltage build up.	Calculation of efficiency, losses,	study	
			and conditions for maximum		
			efficiency.		
Week	6	Types of DC Generators	Characteristics of Compound	On-campus	Assignments

As Time/Number Weight (Marks) Week Due Relevant Learning Outcome							k Due		_
11.	Course	Evaluation							
Week 15	6	Review and Examine Preparation Review of key concurrence topics covered in the Examination preparevision.	cepts and he module. uration and	Preplab cond mod Revi hand prep	Report Writing and Reparation and submiss reports for experilucted throughout ule. ew of key concepts and some experiences in paration for the final expent.	ion of ments the	On-can study	npus	Assignments
Week 14	6	Series Generator in Operation Division of load and series generator para Analysis of series g performance in para operation.	d voltage in arallels. generator rallel	Projection Students of Student	ect Work: ents work on a small ect related to DC erators, applying their vledge and skills acqu ughout the module.		On-can study	npus	Reports
Week 13	6	Shunt Generator in Operation Division of load and parallel operation. Load sharing and vocontrol in parallel of	d voltage in	Anal Iden trou fault Anal	tification	aults	On-can study	npus	Quizzes
Week 12	6	Characteristics of C Generators Analysis of compou generator characte Efficiency, losses, a conditions for max efficiency.	and eristics. and imum	Mea losse Eval iden impi	iency and Losses Anal surement and calculates in a DC generator. uation of efficiency an tification of areas for rovement.	tion of	On-can study	npus	Assignments
Week 11	6	Characteristics of S Generators Analysis of series g characteristics. Efficiency, losses, a conditions for max efficiency.	generator and imum	Oper Setu gene Mea load cont		series ion of	On-can study	npus	Reports
Week 10	6	Characteristics of S Generators Analysis of shunt g characteristics. Efficiency, losses, a conditions for max efficiency.	enerator	Gene Setu oper Mea	llel Operation of erators p and analysis of p ation of shunt general surement and evaluat sharing and voltage rol.	arallel tors.	On-can study	npus	Quizzes
		compound-wound Characteristics and applications of each	l h type.	para of a Calc and effic	surement of meters and characte compound generator. ulation of efficiency, lo conditions for maximulency.	osses, um			

	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	5, 10	LO #1, 2, 8 and 9
assessment	Projects / Lab.	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Report	1	10% (10)	Continuous	All
Summative	Midterm Exam	1	10% (10)	14	LO # 1-14
assessment	Final Exam	2 hours	10% (10)	7	LO # 1-7
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

- S. J. Chapman, Electric Machinery Fundamentals. 5th ed. New York, NY: McGraw-Hill, 2012.
- S. Filizadeh and M. A. S. Masoum, Electric Machines and Drives: Principles, Control, Modeling, and Simulation. Boca Raton, FL: CRC Press, 2017.

Course Description Form

1. Course Name:

Electronic Essentials

2. Course Code:

EET2102

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to:

- 1. To provide a comprehensive understanding of semiconductor diodes, including their construction, characteristics, and applications.
- 2. To explore diode biasing techniques and analyze the behavior of diodes under forward and reverse bias conditions.
- 3. To introduce special diodes, such as Zener diodes, and their specific applications in voltage regulation.
- 4. To examine rectifier circuits using diodes, including half-wave and full-wave rectifiers, and calculate the relevant parameters such as RMS and DC values.

To introduce the fundamentals of transistors, specifically Bipolar Junction Transistors (BJTs), their configurations, biasing techniques, and small-signal analysis, and explore their applications in amplifiers.

9. Teaching and Learning Strategies

The learning and teaching strategies for the module on Computer Principles and operating systems can include:

- 1. Lectures and Presentations: The instructor can deliver lectures and presentations to introduce and explain key concepts, theories, and principles related to computer fundamentals and operating systems. This can help students develop a foundational understanding of the subject matter.
- 2. Practical Demonstrations: Hands-on practical demonstrations can be conducted to illustrate the usage of different computer components, software applications, and operating system functionalities. This can enhance students' understanding of the practical aspects of computer systems.
- 3. Group Discussions and Collaborative Learning: Engaging students in group discussions and collaborative learning activities can promote active participation and deeper understanding. Students can discuss and analyze case studies, real-life examples, and scenarios related to computer fundamentals and operating systems.
- 4. Laboratory Exercises: Practical laboratory exercises can provide students with opportunities to apply their knowledge and skills in a controlled environment. They can work on computer hardware, software installations, operating system configurations, and troubleshooting tasks, allowing them to gain practical experience.

Assignments and Projects: Assignments and projects can be assigned to students to encourage independent learning and critical thinking. They can involve research, analysis, problem-solving, and the application of concepts learned in the module. This can help students develop their skills and deepen their understanding.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Familiarization with the use of lab equipment.	Semiconductor Diodes: Introduction to semiconductor diodes, Diode construction and formation of barrier voltage, Characteristics of semiconductor diodes.	On-campus study	Quizzes
Week 2	5	Characteristics of a diode in forward and reverse bias and plotting characteristic curves.	Diode Biasing: Forward biasing and reverse biasing, Characteristics curves in forward and reverse bias.	On-campus study	Reports
Week 3	5	Half-wave rectifier.	Diode Applications and Special Diodes: Comparison between silicon and germanium diodes, Total resistance of diodes, Breakdown voltage and reverse bias currents, Thermal effects on diodes, and Zener diodes and their applications.	On-campus study	Assignments
Week 4	5	Full-wave bridge rectifier.	Diode Rectifiers: Diodes as current rectifiers, Half-wave rectifier operation, Calculation of RMS, and DC values of current and voltage.	On-campus study	Quizzes
Week 5	5	Full-wave rectifier using center-tapped transformer.	Full-Wave Rectifiers: Full-wave rectification using center-tapped transformers, Bridge rectifiers, Comparison between half-wave and full-wave rectifiers.	On-campus study	Reports

Week 6	5	Half-wave rectifier with RC filter.	Filter Circuits: Introduction to filters, RC filters and their calculations.	On-campus study	Assignments
Week 7	5	Full-wave rectifier with RC filter.	LC Filters and Ripple Factor: LC filters and their calculations, Calculation of output voltage (ripple voltage and DC voltage), Ripple factor calculation.	On-campus study	Quizzes
Week 8	5	Parallel clipper circuits (positive and negative).	Capacitor-Input Filters: CRC filters, Calculation of output voltage (ripple voltage and DC voltage), Ripple factor calculation.	On-campus study	Reports
Week 9	5	DC voltage multiplier circuit for half-wave rectifier.	Clipping and Clamping Circuits: Clipping circuits: positive and negative clippers, Diode clampers.	On-campus study	Assignments
Week 10	5	DC voltage multiplier circuit for full-wave rectifier.	Voltage Multipliers: Voltage multipliers for rectifiers, Voltage doubler and voltage tripler configurations.	On-campus study	Quizzes
Week 11	5	Zener diode - forward and reverse characteristics.	Zener Diodes: Zener diode introduction, Zener breakdown voltage and breakdown region, Zener diode voltage regulation.	On-campus study	Reports
Week 12	5	Utilizing Zener diode for DC voltage regulation with a fixed resistor load.	Introduction to Transistors: Transistor basics: Bipolar Junction Transistor (BJT) introduction, BJT structure, symbol, and characteristics.	On-campus study	Assignments
Week 13	5	Utilizing Zener diode for DC voltage regulation with a variable resistor load.	BJT Configurations and Biasing: BJT regions of operation, Definition of βdc and αdc, BJT connections and external characteristics, Biasing techniques: base bias, self-bias, voltage-divider bias.	On-campus study	Quizzes
Week 14	5	Achieving current gain (dcβ) in a transistor.	Small-Signal Analysis and Stability: Small-signal current gain and temperature effects, Analysis of operating point stability.	On-campus study	Reports
Week 15	5	Characteristics of a transistor in common base configuration.	Transistor Applications: Transistor applications and amplifiers, Review and application examples.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

R. L. Boylestad and L. Nashelsky, "Electronic Devices and Circuit Theory," 11th ed. Upper Saddle River, NJ: Pearson,

2012.

Electrical Circuit Analysis

Course Description Form

1. Course Name:

Electrical Circuit Analysis

2. Course Code:

EET2103

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to:

- 1. To provide a comprehensive understanding of semiconductor diodes, To introduce fundamental concepts: The module aims to provide a solid understanding of the fundamental concepts and principles of electrical circuits. This includes definitions and units of electrical quantities, as well as the behavior of circuit elements in AC circuits.
- 2. To develop analysis techniques: The module aims to develop students' skills in analyzing AC circuits using various techniques. This includes sinusoidal steady-state analysis using Kirchhoff's laws, mesh analysis, nodal analysis, superposition's theorem, Thevenin's theorem, Norton's theorem, and source transformations.
- 3. To understand impedance and admittance: Students will gain a comprehensive understanding of impedance and admittance and their applications in AC circuits. This involves analyzing impedance combinations, calculating equivalent impedance and admittance, and understanding their significance in circuit analysis.
- 4. To analyze sinusoidal steady-state response: The module aims to equip students with the ability to analyze the sinusoidal steady-state response of AC circuits. This includes understanding the behavior of series and parallel RLC circuits with external sources, as well as source-free circuits. Students will learn to determine circuit responses in the time domain and frequency domain.
- 5. To explore step response of RLC circuits: The module aims to cover the step response of RLC circuits, both in series and parallel configurations. Students will learn to analyze and interpret the behavior of circuits when subjected to step inputs, considering parameters such as settling time, rise time, and overshoot.

To study general second-order circuits: Students will develop an understanding of general second-order circuits, which involve both series and parallel RLC circuits with external sources. The module aims to provide comprehensive knowledge of the analysis techniques and principles applicable to these circuits.

9. Teaching and Learning Strategies

The learning and teaching strategies for the module on Computer Principles and operating systems can include:

1. Lectures and Presentations: The instructor can deliver lectures and presentations to introduce and explain key

concepts, theories, and principles related to computer fundamentals and operating systems. This can help students develop a foundational understanding of the subject matter.

- 2. Practical Demonstrations: Hands-on practical demonstrations can be conducted to illustrate the usage of different computer components, software applications, and operating system functionalities. This can enhance students' understanding of the practical aspects of computer systems.
- 3. Group Discussions and Collaborative Learning: Engaging students in group discussions and collaborative learning activities can promote active participation and deeper understanding. Students can discuss and analyze case studies, real-life examples, and scenarios related to computer fundamentals and operating systems.
- 4. Laboratory Exercises: Practical laboratory exercises can provide students with opportunities to apply their knowledge and skills in a controlled environment. They can work on computer hardware, software installations, operating system configurations, and troubleshooting tasks, allowing them to gain practical experience. Assignments and Projects: Assignments and projects can be assigned to students to encourage independent learning and critical thinking. They can involve research, analysis, problem-solving, and the application of concepts learned in the module. This can help students develop their skills and deepen their understanding.

Week	Hours	Required Learning Outcomes	Unit or	Learning	Evaluation
			subject name	method	method
Week 1	5	Introduction to Laboratory Equipment and Safety Familiarize students with the lab equipment and safety protocols. Introduce the use of multimeters, function generators, oscilloscopes, and breadboards.	Definitions and units.	On-campus study	Quizzes
Week 2	5	DC Circuit Analysis: Perform experiments to reinforce DC circuit analysis techniques. Verify Ohm's law, Kirchhoff's laws, and voltage division in DC circuits.	Sinusoids, phasors for circuit elements.	On-campus study	Reports
Week 3	5	AC Circuit Fundamentals Introduce AC circuit concepts, including sinusoidal signals and phasors. Measure and analyze AC voltages and currents using oscilloscopes and multimeters.	Impedance, admittance, impedance combinations.	On-campus study	Assignments
Week 4	5	Impedance and Admittance Measurements Measure and calculate impedance and admittance of various circuit elements. Verify impedance combinations in series and parallel configurations.	Sinusoidal steady-state analysis (Kirchhoff's laws).	On-campus study	Quizzes
Week 5	5	Sinusoidal Steady-State Analysis Analyze AC circuits using Kirchhoff's laws and phasor techniques. Verify the calculations by comparing theoretical results with measured values.	Sinusoidal steady-state analysis (Mesh analysis).	On-campus study	Reports
Week 6	5	Mesh and Nodal Analysis Perform experiments to practice mesh and nodal analysis techniques. Analyze circuits using these methods and compare the results.	Sinusoidal steady-state analysis (Nodal analysis).	On-campus study	Assignments
Week 7	5	Superposition's Theorem Perform experiments to demonstrate the application of superposition's theorem.	Sinusoidal steady-state analysis	On-campus study	Quizzes

		Calculate the response of circuits by	(Superposition's		
		considering individual sources separately.	theorem).		
Week 8	5	Thevenin and Norton Equivalent Circuits Determine Thevenin and Norton equivalent circuits of complex networks. Measure and validate the calculated values using practical circuits.	Sinusoidal steady-state analysis (Thevenin's theorem).	On-campus study	Reports
Week 9	5	Source Transformations Perform source transformations to convert between voltage and current sources. Analyze circuits before and after the transformations to compare the results.	Sinusoidal steady-state analysis (Norton's theorem).	On-campus study	Assignments
Week 10	5	Series RLC Circuit Analysis Study the behavior of series RLC circuits in AC circuits. Measure and analyze the transient and steady-state responses of series RLC circuits.	Sinusoidal steady-state analysis (Source transformations).	On-campus study	Quizzes
Week 11	5	Parallel RLC Circuit Analysis Study the behavior of parallel RLC circuits in AC circuits. Measure and analyze the transient and steady-state responses of parallel RLC circuits.	Source-free series RLC circuits.	On-campus study	Reports
Week 12	5	Step Response of RLC Circuits Analyze the step response of series and parallel RLC circuits. Measure and compare the settling time, rise time, and overshoot with theoretical calculations.	Source-free parallel RLC circuits.	On-campus study	Assignments
Week 13	5	Frequency Response of RLC Circuits Study the frequency response of RLC circuits using AC signals of varying frequencies. Measure and analyze the circuit's response at different frequencies.	Step response of series RLC circuits.	On-campus study	Quizzes
Week 14	5	General Second-Order Circuits Analyze general second-order circuits with series and parallel RLC components. Measure and analyze the natural response, transient response, and frequency response.	Step response of parallel RLC circuits.	On-campus study	Reports
Week 15	5	Project and Review Assign a comprehensive project where students apply circuit analysis techniques to a real-world problem. Review key concepts, techniques, and laboratory experiments to prepare for the final assessment.	General second- order circuits.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All

	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessme	ent		100% (100 Marks)		

12. Learning and Teaching Resources

Book Reference: J. W. Nilsson and S. A. Riedel, Electric Circuits. Boston, MA: Pearson, 2020.

Book Reference: W. H. Hayt Jr., J. E. Kemmerly, and S. M. Durbin, Engineering Circuit Analysis. New York, NY: McGraw-Hill, 2017.

Course Description Form

1. Course Name:

Sensors

2. Course Code:

EET2104

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

100 H / 4 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to:

- 1. To provide students with a comprehensive understanding of the principles and working mechanisms of various sensors used in electrical engineering.
- 2. To familiarize students with the different types and classifications of sensors and their applications in various fields.
- 3. To develop students' skills in selecting appropriate sensors for specific measurement requirements and understanding their characteristics and parameters.
- 4. To equip students with the knowledge and techniques for sensor calibration, signal conditioning, and integration into electrical systems.
- 5. To enable students to apply their theoretical knowledge to practical scenarios through hands-on experiments and projects, fostering problem-solving and analytical skills in the field of sensor technology.

9. Teaching and Learning Strategies

The learning and teaching strategies for the module on Computer Principles and operating systems can include:

- 1. Lectures and Presentations: The instructor can deliver lectures and presentations to introduce and explain key concepts, theories, and principles related to computer fundamentals and operating systems. This can help students develop a foundational understanding of the subject matter.
- 2. Practical Demonstrations: Hands-on practical demonstrations can be conducted to illustrate the usage of different computer components, software applications, and operating system functionalities. This can enhance students' understanding of the practical aspects of computer systems.
- 3. Group Discussions and Collaborative Learning: Engaging students in group discussions and collaborative learning activities can promote active participation and deeper understanding. Students can discuss and analyze case studies, real-life examples, and scenarios related to computer fundamentals and operating systems.
- 4. Laboratory Exercises: Practical laboratory exercises can provide students with opportunities to apply their knowledge and skills in a controlled environment. They can work on computer hardware, software installations, operating system configurations, and troubleshooting tasks, allowing them to gain practical experience. Assignments and Projects: Assignments and projects can be assigned to students to encourage independent learning and critical thinking. They can involve research, analysis, problem-solving, and the application of concepts learned in the module. This can help students develop their skills and deepen their understanding.

Week	Hours	Required Learning Outcomes	Unit or subject	Learning	Evaluation
			name	method	method
Week 1	4	Lab Introduction: Overview of the laboratory and equipment used for sensor experiments. Safety Procedures: Introduction to lab safety rules and precautions when working with sensors. Familiarization with Measurement Tools: Proper use of multimeters, oscilloscopes, and data acquisition systems.	Introduction to Sensors in Electrical Engineering: Types, classification, and working principles. Sensor characteristics: Sensitivity, accuracy, resolution, and linearity.	On-campus study	Quizzes
Week 2	4	Temperature Sensor Experiments: Calibration and testing of thermocouples, resistance temperature detectors (RTDs), and thermistors Light Sensor Experiments: Characterization and testing of photodiodes, phototransistors, and light- dependent resistors (LDRs)	Temperature Sensors: Thermocouples, resistance temperature detectors (RTDs), and thermistors	On-campus study	Reports
Week 3	4	Strain Gauge and Load Cell Experiments: Measurement of strain using strain gauges and load sensing with load cells. Pressure Sensor Experiments: Calibration and testing of piezoresistive and capacitive pressure sensors.	Light Sensors: Photodiodes, phototransistors, and light-dependent resistors (LDRs).	On-campus study	Assignments
Week 4 4		Position and Displacement Sensor Experiments: Testing and characterization of potentiometers, encoders, and linear variable differential transformers (LVDTs).	Strain Gauges and Load Cells: Principles of strain measurement and load sensing.	On-campus study	Quizzes

		Magnetic Sensor Experiments: Study of Hall effect sensors and magnetoresistive sensors.			
Week 5	4	Accelerometer Experiments: Measurement of acceleration using MEMS-based accelerometers. Gyroscope Experiments: Characterization and testing of MEMS-based gyroscopes for angular rate sensing.	Pressure Sensors: Piezoresistive pressure sensors, capacitive pressure sensors.	On-campus study	Reports
Week 6	4	Proximity Sensor Experiments: Testing and calibration of inductive and capacitive proximity sensors. Current Sensor Experiments: Measurement of current using Hall effect sensors and current transformers.	Position and Displacement Sensors: Potentiometers, encoders, and linear variable differential transformers (LVDTs).	On-campus study	Assignments
Week 7	4	Voltage and Power Sensor Experiments: Calibration and testing of voltage dividers, voltage transformers, and power sensors. Wireless Sensor Network Experiments: Introduction to wireless sensor networks and practical applications in electrical engineering.	Magnetic Sensors: Hall effect sensors and magnetoresistive sensors.	On-campus study	Quizzes
Week 8	4	Sensor Calibration and Signal Conditioning: Techniques for sensor calibration and implementation of signal conditioning circuits Sensor Integration and Applications: Integration of sensors in electrical systems and hands-on application projects.	Accelerometers: Principles of acceleration sensing and MEMS-based accelerometers.	On-campus study	Reports
Week 9	4	Ultrasonic Sensor Experiments: Testing and characterization of ultrasonic distance sensors. Gas Sensor Experiments: Calibration and testing of gas sensors for various gases.	Gyroscopes: Principles of angular rate sensing and MEMS-based gyroscopes.	On-campus study	Assignments
Week 10	4	Humidity and Moisture Sensor Experiments: Measurement of humidity and moisture using capacitive and resistive sensors. pH Sensor Experiments: Testing and calibration of pH sensors for acidity and alkalinity measurements.	Proximity Sensors: Inductive and capacitive proximity sensors.	On-campus study	Quizzes
Week 11	4	Force and Load Sensor Experiments: Characterization and testing of force and load sensors. Flow Sensor Experiments: Measurement of fluid flow using various flow sensors.	Current Sensors: Hall effect current sensors and current transformers.	On-campus study	Reports
Week 12	4	Sound Sensor Experiments: Calibration and testing of sound sensors for audio measurements. Motion Sensor Experiments: Testing and	Voltage and Power Sensors: Voltage dividers, voltage transformers, and	On-campus study	Assignments

		characterization of motion sensors for detection and tracking.	power sensors.		
Week 13	4	Optical Sensor Experiments: Characterization and testing of optical sensors for detection and measurement applications. Vibration Sensor Experiments: Measurement of vibration using accelerometers and piezoelectric sensors.	Wireless Sensor Networks: Introduction, protocols, and applications in electrical engineering.	On-campus study	Quizzes
Week 14	4	Environmental Sensor Experiments: Testing and calibration of sensors for temperature, humidity, pressure, and air quality. Sensor Interfacing: Integration of sensors with microcontrollers or data acquisition systems for data acquisition and analysis.	Sensor Calibration and Signal Conditioning: Calibration techniques and signal conditioning circuits specific to electrical engineering sensors.	On-campus study	Reports
Week 15	4	Final Project: Design and implementation of a sensor-based system or application, including data acquisition, processing, and control aspects. Project Presentation and Evaluation: Presentation of the final project and evaluation of its performance and functionality.	Sensor Integration and Applications: Integration of sensors in electrical systems and practical applications.	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

R. Pallas-Areny and J. G. Webster, "Sensors and Signal Conditioning," 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2001.

P. Scherz and S. Monk, "Practical Electronics for Inventors," 4th ed. New York, NY, USA: McGraw-Hill Education, 2016.

Course Description Form

1. Course Name:

Applied Mathematics

2. Course Code:

EET2105

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to:

- 1. To develop a solid understanding of vector analysis, including vector operations, dot and cross products, lines and planes in space, and vector-valued functions.
- 2. To enable students to effectively sketch curves by understanding key aspects such as domain and range, symmetry, intercepts, asymptotes, concavity, and inflection points.
- 3. To familiarize students with the concepts of complex numbers, including the complex plane, polar form, De Moivre's theorem, and complex roots, and demonstrate their applications in solving mathematical problems.
- 4. To develop proficiency in working with multiple integrals, including summation in two directions, double and triple integrals, and change of variables, and understand their applications in physics and engineering.
- 5. To provide a strong foundation in ordinary differential equations (ODEs) and partial differential equations (PDEs), including solving techniques for first-order ODEs, separation of variables for PDEs, and applications in wave and heat equations.

9. Teaching and Learning Strategies

The learning and teaching strategies employed in the applied mathematics module are designed to facilitate active engagement, critical thinking, and practical application of mathematical concepts. The following strategies are commonly used:

- 1. Lectures: Lectures serve as the primary mode of content delivery, where instructors present key concepts, theories, and techniques. Lectures may include visual aids, examples, and demonstrations to enhance understanding and provide real-world context.
- 2. Interactive Discussions: Interactive discussions encourage student participation and facilitate deeper understanding of the material. Students are encouraged to ask questions, share their insights, and engage in discussions on specific topics or problem-solving strategies.
- 3. Problem-solving Sessions: Problem-solving sessions allow students to apply mathematical principles to solve a variety of problems. These sessions may be conducted in groups or individually, allowing students to collaborate, exchange ideas, and develop problem-solving skills.

- 4. Practical Exercises: Practical exercises involve hands-on application of mathematical concepts through computational tasks, modeling exercises, or simulations. These exercises reinforce theoretical knowledge and help students develop proficiency in using mathematical tools and software.
- 5. Case Studies and Real-world Applications: Case studies and real-world applications demonstrate the relevance of mathematics in various fields. Students analyze and solve mathematical problems based on real-life scenarios, enabling them to connect theoretical concepts with practical applications.
- 6. Computer-based Learning: Computer-based learning resources, such as online tutorials, interactive simulations, and mathematical software, are utilized to enhance students' understanding and proficiency in applying mathematical techniques.
- 7. Group Projects: Group projects promote teamwork, communication, and problem-solving skills. Students work collaboratively on mathematical projects or research assignments, allowing them to explore advanced topics or applications of mathematics.
- 8. Self-directed Learning: Students are encouraged to take responsibility for their learning by engaging in self-directed study. This may involve reading recommended textbooks, exploring additional resources, and practicing problem-solving independently.
- 9. Assessments: Regular assessments, including quizzes, tests, and assignments, evaluate students' understanding and application of mathematical concepts. These assessments provide feedback and help track progress throughout the module.

Tutorial Sessions: Tutorial sessions provide opportunities for students to seek clarification, discuss challenging topics, and receive individualized guidance from instructors or teaching assistants.

Week	Hours Required Learning		Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Vector Analysis: Vector operations, dot and cross products.	Vector Analysis: Vector operations, dot and cross products.	On-campus study	Quizzes
Week 2	5	Vector Analysis: Lines and planes in space, vector-valued functions.	Vector Analysis: Lines and planes in space, vector-valued functions.	On-campus study	Reports
Week 3	5	Curve Sketching: Domain and range, symmetry, intercepts, asymptotes.	Curve Sketching: Domain and range, symmetry, intercepts, asymptotes.	On-campus study	Assignments
Week 4	5	Curve Sketching: Concavity, inflection points. Complex Numbers: Complex plane, polar form.	Curve Sketching: Concavity, inflection points. Complex Numbers: Complex plane, polar form.	On-campus study	Quizzes
Week 5	5	Multiple Integrals: Summation in two directions, double integrals.	Multiple Integrals: Summation in two directions, double integrals.	On-campus study	Reports
Week 6	5	Multiple Integrals: Triple integrals, applications, alternative notation.	Multiple Integrals: Triple integrals, applications, alternative notation.	On-campus study	Assignments
Week 7 5 section Ordina (ODE) differen		Coordinate Geometry: Conic sections. Ordinary Differential Equations (ODE): Solution of first-order differential equations by separation of variables.	Coordinate Geometry: Conic sections. Ordinary Differential Equations (ODE): Solution of first-order differential equations by separation of variables.	On-campus study	Quizzes

Week 8	5	Coordinate Geometry: Polar coordinates, parametric equations. Ordinary Differential Equations (ODE): Homogeneous firstorder differential equations, linear first-order differential equation.	Coordinate Geometry: Polar coordinates, parametric equations. Ordinary Differential Equations (ODE): Homogeneous firstorder differential equations, linear first-order differential equation.	On-campus study	Reports
Week 9	5	Ordinary Differential Equations (ODE): Second-order differential equations, power series methods of solving ODEs.	Ordinary Differential Equations (ODE): Second-order differential equations, power series methods of solving ODEs.	On-campus study	Assignments
Week 10	5	Ordinary Differential Equations (ODE): Higher order differential coefficients as series, Leibniz's theorem, power series solution by the Leibniz–Maclaurin method and the Frobenius Method. Partial Differential Equations (PDE): Partial integration, solution of PDEs by direct partial integration.	Ordinary Differential Equations (ODE): Higher order differential coefficients as series, Leibniz's theorem, power series solution by the Leibniz–Maclaurin method and the Frobenius Method. Partial Differential Equations (PDE): Partial integration, solution of PDEs by direct partial integration.	On-campus study	Quizzes
Week 11	5	Partial Differential Equations (PDE): Some important engineering PDEs, separating the variables.	Partial Differential Equations (PDE): Some important engineering PDEs, separating the variables.	On-campus study	Reports
Week 12	5	Partial Differential Equations (PDE): The wave equation, the heat conduction equation.	Partial Differential Equations (PDE): The wave equation, the heat conduction equation.	On-campus study	Assignments
Week 13	5	Laplace Transforms: Introduction, properties of Laplace Transform, Laplace Transform of Functions.	Laplace Transforms: Introduction, properties of Laplace Transform, Laplace Transform of Functions.	On-campus study	Quizzes
Week 14	5	Laplace Transforms: The Initial and Final Value Theorems, inverse Laplace transform, inverse Laplace transform using Partial Fraction.	Laplace Transforms: The Initial and Final Value Theorems, inverse Laplace transform, inverse Laplace transform using Partial Fraction.	On-campus study	Reports
Week 15	5	Laplace Transforms: Solution of Differential Equations, solution of simultaneous differential equations.	Laplace Transforms: Solution of Differential Equations, solution of simultaneous differential equations.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7

assessment	Final Exam	3 hours	50% (50)	16	All
Total assessme	ent		100% (100 Marks)		

12. Learning and Teaching Resources

E. Kreyszig, "Advanced Engineering Mathematics," John Wiley & Sons, 2011.

M. L. Boas, "Mathematical Methods in the Physical Sciences," John Wiley & Sons, 2005.

Course Description Form

1. Course Name:

Computer Application

2. Course Code:

MTU1005

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

75 H / 3 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to:

- 1. To provide an overview of Microsoft Word, Excel, and PowerPoint, and familiarize students with their key features and user interfaces.
- 2. To develop essential skills in creating, saving, and opening documents in Microsoft Word, including formatting text and paragraphs and working with styles and themes.
- 3. To explore advanced features in Microsoft Word, such as page layout options, working with headers, footers, and page numbers, and incorporating tables, images, and objects.
- 4. To introduce spreadsheets and worksheets in Microsoft Excel, and develop students' skills in data entry, manipulation, and basic formulas and functions.
- 5. To delve into advanced Microsoft Excel features, including working with ranges and cells, sorting and filtering data, and creating charts and graphs.
- 6. To guide students in creating and editing slides in Microsoft PowerPoint, applying themes and templates, and adding text, images, and multimedia elements.
- 7. To explore advanced PowerPoint features, such as slide transitions, animations, using SmartArt and shapes, and utilizing presenter tools and slide show options.

- 8. To teach word processing techniques in Microsoft Word, such as mail merge, document collaboration, creating professional documents, and managing references and citations.
- 9. To provide advanced data analysis skills in Microsoft Excel, covering advanced formulas and functions, data validation, conditional formatting, and PivotTables.
- 10. To explore collaboration and sharing features in Microsoft Office, including sharing and coauthoring documents, using comments and track changes, and protecting documents.

9. Teaching and Learning Strategies

The learning and teaching strategies employed in the applied mathematics module are designed to facilitate active engagement, critical thinking, and practical application of mathematical concepts. The following strategies are commonly used:

- 1. Lectures: Lectures serve as the primary mode of content delivery, where instructors present key concepts, theories, and techniques. Lectures may include visual aids, examples, and demonstrations to enhance understanding and provide real-world context.
- 2. Interactive Discussions: Interactive discussions encourage student participation and facilitate deeper understanding of the material. Students are encouraged to ask questions, share their insights, and engage in discussions on specific topics or problem-solving strategies.
- 3. Problem-solving Sessions: Problem-solving sessions allow students to apply mathematical principles to solve a variety of problems. These sessions may be conducted in groups or individually, allowing students to collaborate, exchange ideas, and develop problem-solving skills.
- 4. Practical Exercises: Practical exercises involve hands-on application of mathematical concepts through computational tasks, modeling exercises, or simulations. These exercises reinforce theoretical knowledge and help students develop proficiency in using mathematical tools and software.
- 5. Case Studies and Real-world Applications: Case studies and real-world applications demonstrate the relevance of mathematics in various fields. Students analyze and solve mathematical problems based on real-life scenarios, enabling them to connect theoretical concepts with practical applications.
- 6. Computer-based Learning: Computer-based learning resources, such as online tutorials, interactive simulations, and mathematical software, are utilized to enhance students' understanding and proficiency in applying mathematical techniques.
- 7. Group Projects: Group projects promote teamwork, communication, and problem-solving skills. Students work collaboratively on mathematical projects or research assignments, allowing them to explore advanced topics or applications of mathematics.
- 8. Self-directed Learning: Students are encouraged to take responsibility for their learning by engaging in self-directed study. This may involve reading recommended textbooks, exploring additional resources, and practicing problem-solving independently.
- 9. Assessments: Regular assessments, including quizzes, tests, and assignments, evaluate students' understanding and application of mathematical concepts. These assessments provide feedback and help track progress throughout the module.
- 10. Tutorial Sessions: Tutorial sessions provide opportunities for students to seek clarification, discuss challenging topics, and receive individualized guidance from instructors or teaching assistants.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to Lab Environment and Office Suite - Lab setup and software installation. Overview of Microsoft Office Suite tools and features.	Introduction to Microsoft Office Suite Overview of Microsoft Word, Excel, and PowerPoint Understanding the user interface and common features	On-campus study	Quizzes

Week 2	5	Microsoft Word Lab - Creating, editing, and formatting documents. Inserting and formatting images and tables.	Microsoft Word Basics Creating, saving, and opening documents Formatting text and paragraphs Working with styles and themes	On-campus study	Reports
Week 3	5	Microsoft Excel Lab - Creating spreadsheets and entering data. Formulas and functions for calculations.	Advanced Microsoft Word Features Page layout and formatting options Working with headers, footers, and page numbers Using tables, images, and other objects	On-campus study	Assignments
Week 4	5	Microsoft PowerPoint Lab - Creating, editing, and designing slides. Adding multimedia elements and animations.	Microsoft Excel Basics Introduction to spreadsheets and worksheets Data entry and manipulation Formulas and functions	On-campus study	Quizzes
Week 5	5	Word Processing Techniques Lab - Mail merge and document collaboration exercises. Creating professional documents with advanced formatting.	Advanced Microsoft Excel Features Working with ranges and cells Sorting and filtering data Creating charts and graphs	On-campus study	Reports
Week 6	5	Data Analysis Lab with Excel - Advanced formula and function exercises. Sorting, filtering, and analyzing data.	Microsoft PowerPoint Basics Creating and editing slides Applying themes and templates Adding text, images, and multimedia elements	On-campus study	Assignments
Week 7	5	Presentation Design Lab with PowerPoint - Applying design principles to create visually appealing slides. Adding interactive elements and customizing slide layouts.	Advanced Microsoft PowerPoint Features Slide transitions and animations Using SmartArt and shapes Presenter tools and slide show options	On-campus study	Quizzes
Week 8	5	Collaboration and Sharing Lab - Collaborative document editing and reviewing. Sharing and protecting documents with permissions.	Word Processing Techniques in Microsoft Word Mail merge and document collaboration Creating professional documents (reports, resumes, etc.) Managing references and citations	On-campus study	Reports
Week 9	5	Automation and Customization Lab - Recording and running macros for repetitive tasks. Customizing the ribbon and creating shortcuts.	Data Analysis in Microsoft Excel Advanced formulas and functions Data validation and conditional formatting PivotTables and data visualization	On-campus study	Assignments
Week 10	5	Integrating Office Applications Lab - Linking and embedding data between Word, Excel, and	Presentation Design in Microsoft PowerPoint Design principles for effective	On-campus study	Quizzes

As			Time/Numbe	er	Weight (Marks)	Wee	k Due	Relev Outco	ant Learning ome
11.	Course	Evaluation			·				
Week 15	5	Project-based Labs work on individual projects that intege Excel, and PowerP Projects can involve as creating a profeereport, analyzing of designing an interaction.	l or group rate Word, oint skills. ve tasks such ssional lata, or	Stud grou Exce Rev feat	al Projects and Review dents work on individua up projects using Word, el, and PowerPoint iew of key concepts and ures covered throughouse	d	On-car study	npus	Assignments
Week 14	5	Project-based Labs work on individual projects that intege Excel, and PowerP Projects can involve as creating a profe report, analyzing of designing an interapresentation.	l or group rate Word, oint skills. ve tasks such ssional lata, or	Tim show Trow issu Cust	ranced Tips and Tricks ne-saving techniques an rtcuts ubleshooting common nes tomizing settings and ions	d	On-car study	npus	Reports
Week 13	5	Project-based Labs work on individual projects that integ Excel, and PowerP Projects can involve as creating a profe report, analyzing of designing an interapresentation.	l or group rate Word, oint skills. ve tasks such ssional lata, or	Link Exce Emb	grating Office Applicati king data between Word el, and PowerPoint bedding objects and cre amic content porting and exporting da	d, ating	On-car study	npus	Quizzes
Week 12	5	Project-based Labs work on individual projects that intege Excel, and PowerP Projects can involve as creating a profe report, analyzing of designing an interapresentation.	l or group rate Word, oint skills. ve tasks such ssional lata, or	Auto Offic Mac Wor Cust crea	omating Tasks in Micro ce cros and automation in rd, Excel, and PowerPoi tomizing the ribbon and ating shortcuts ng add-ins and producti	nt 1	On-car study	npus	Assignments
Week 11	5	Advanced Tips and Exploring time-sav techniques and pro hacks. Troubleshoo common issues and	ring oductivity oting	Michael Shan docu Usin chan Prot	aboration and Sharing in rosoft Office ring and co-authoring uments and tracking comments and trackinges tecting documents and trolling access		On-car study	npus	Reports
		PowerPoint. Impore exporting data bet applications.	ween	Cust mas Add (hy)	sentations tomizing slide layouts a ster slides ling interactive element perlinks, buttons, etc.)	S			

	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

M. E. Vermaat, S. M. Freund, C. Hoisington, and E. Schmieder, "Microsoft Office 365 & Office 2019: Introductory," Boston, MA: Cengage Learning, 2020.

Triad Interactive, Inc., "Microsoft Office 2019: A Skills Approach," Boston, MA: Cengage Learning, 2019.

Course Description Form

1. Course Name:

DC Motors

2. Course Code:

EET2201

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to achieve the following objectives:

- 1. To provide learners with a thorough understanding of the principles of operation of DC motors, including the back EMF equation and voltage equation.
- 2. To enable learners to analyze and interpret torque development in DC motors, including armature torque, shaft torque, and torque characteristics.
- 3. To familiarize learners with different types of DC motors and their specific characteristics, as well as their applications in various industries.
- 4. To educate learners on the methods of starting and stopping DC motors, including direct starting, armature resistance starting, and various techniques for stopping the motor.

5. To equip learners with knowledge of speed control methods for DC motors, including field control, voltage control, and armature resistance control.

To introduce learners to testing procedures such as brake test, Swinburne's test, and temperature rise test, and enable them to evaluate motor performance and efficiency.

9. Teaching and Learning Strategies

The DC Motor Module can employ a variety of learning and teaching strategies to enhance understanding and engagement. Some suggested strategies include:

- 1. Lectures: Instructor-led lectures can provide an overview of key concepts, principles, and theories related to DC motors. This can serve as a foundation for further exploration.
- 2. Interactive Discussions: Engage learners in discussions to promote critical thinking and deeper understanding of the module topics. Encourage learners to ask questions, share their perspectives, and participate actively in group discussions.
- 3. Practical Demonstrations: Conduct practical demonstrations or laboratory sessions to illustrate the operation of DC motors, measurement techniques, and testing procedures. Hands-on activities can enhance understanding and provide real-world application experiences.
- 4. Simulations and Virtual Labs: Utilize interactive simulations or virtual laboratory environments to allow learners to experiment with DC motor operation, speed control, and performance evaluation. This can enhance their understanding of the concepts in a virtual environment.
- 5. Case Studies: Present case studies showcasing practical applications of DC motors in various industries. Analyze the motor requirements, challenges faced, and the solutions implemented. This will enable learners to connect theoretical knowledge to real-world scenarios.
- 6. Problem-solving Activities: Assign problem-solving activities related to DC motor operation, control, and performance. Encourage learners to apply their knowledge to solve complex problems, fostering critical thinking and problem-solving skills.
- 7. Group Projects: Divide learners into groups and assign them projects related to DC motors. This can involve designing motor control systems, optimizing motor performance, or developing innovative applications. This promotes teamwork, collaboration, and practical application of concepts.
- 8. Multimedia Resources: Utilize multimedia resources such as videos, animations, and interactive online modules to present complex concepts in an engaging and visual manner. This can enhance learner comprehension and retention.
- 9. Assessments: Include both formative and summative assessments to evaluate learner progress and understanding. This can include quizzes, assignments, practical demonstrations, and examinations.
- 10. Provide constructive feedback to help learners improve their understanding and performance. Guest Speakers: Invite industry professionals or experts to deliver guest lectures on topics related to DC motors. This exposes learners to real-world experiences and industry perspectives.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to the lab environment and safety guidelines. Familiarization with DC motor components and equipment.	Introduction to DC motors and their principles of operation. Back EMF equation and its significance.	On-campus study	Quizzes
Week 2	6	Experiment: Measurement of motor parameters (resistance, inductance, back EMF). Data analysis and interpretation.	Voltage equation of a DC motor and its applications Torque development in DC motors: armature torque and shaft torque.	On-campus study	Reports

Week 3	6	Experiment: Torque-speed characteristics of DC motors. Measurement and analysis of torque at different speeds.	Torque characteristics of DC motors and their analysis.	On-campus study	Assignments
Week 4	6	Experiment: Starting methods for DC motors. Practical demonstration of direct starting and armature resistance starting.	Dynamic behavior of DC motors during acceleration, deceleration, and load changes.	On-campus study	Quizzes
Week 5	6	Experiment: Speed control methods for DC motors. Practical implementation of field control, voltage control, and armature resistance.	Types of DC motors and their characteristics: series, shunt, compound, permanent magnet.	On-campus study	Reports
Week 6	6	Experiment: Motor efficiency and losses. Calculation of motor efficiency and identification of different types of losses.	Losses in DC motors: iron losses, copper losses, mechanical losses. Calculation of motor efficiency and maximum power output.	On-campus study	Assignments
Week 7	6	Experiment: Motor braking techniques. Implementation and analysis of electric braking, plugging, and rheostat braking.	DC motor starting methods: direct starting, armature resistance starting.	On-campus study	Quizzes
Week 8	6	Experiment: Testing procedures for DC motors. Practical application of brake test and Swinburne's test.	Three-point and four-point starters for DC motor starting. Reduced armature voltage starting techniques.	On-campus study	Reports
Week 9	6	Experiment: Temperature rise test. Measurement and evaluation of motor temperature rise.	Special methods of starting DC motors.	On-campus study	Assignments
Week 10	6	Experiment: Hopkinson's test for motor efficiency. Calculation and analysis of motor efficiency at different loads.	Stopping methods for DC motors: electric braking, plugging, rheostat braking.	On-campus study	Quizzes
Week 11	6	Experiment: Solid-state devices in motor control. Practical implementation of electronic speed controllers and variable frequency drives.	Regenerative braking and its benefits. Braking and mechanical time constant in DC motors.	On-campus study	Reports
Week 12	6	Experiment: Motor starting and stopping methods. Application of different starting and stopping techniques.	Speed control methods: field control, voltage control, armature resistance control.	On-campus study	Assignments
Week 13	6	Experiment: Speed control using solid-state devices. Hands-on experience with controlling motor speed using electronic devices.	Introduction to solid-state devices in controlling DC motors.	On-campus study	Quizzes
Week	6	Experiment: Motor control	Testing procedures for DC	On-campus	Reports

14		system design project. Group project to design a control system for a specific motor application.	motors: brake test, Swinburne's test.	study	
Week 15	6	Recap of lab experiments and review of key concepts. Lab examination or presentation of final projects.	Temperature rise test and its significance. Hopkinson's test for motor efficiency evaluation.	On-campus study	Assignments

	As		Time/Number Weight (Marks)		Relevant Learning
As					Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment		100% (100 Marks)		

12. Learning and Teaching Resources

A. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Oxford, UK: Newnes, 2013.

B. S. Guru and H. R. Hiziroglu, Electric Machinery and Transformers. Hoboken, NJ: Wiley, 2001.

Course Description Form

1.	Course Name:	
Elect	tronic Circuits	

2. Course Code:

EET2202

3. Semester / Year:

First Semester of the Academic Year 2024-2025 - Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims to achieve the following objectives:

- 1. To provide learners with a thorough understanding of the principles of operation of DC motors, including the back EMF equation and voltage equation.
- 2. To enable learners to analyze and interpret torque development in DC motors, including armature torque, shaft torque, and torque characteristics.
- 3. To familiarize learners with different types of DC motors and their specific characteristics, as well as their applications in various industries.
- 4. To educate learners on the methods of starting and stopping DC motors, including direct starting, armature resistance starting, and various techniques for stopping the motor.
- 5. To equip learners with knowledge of speed control methods for DC motors, including field control, voltage control, and armature resistance control.

To introduce learners to testing procedures such as brake test, Swinburne's test, and temperature rise test, and enable them to evaluate motor performance and efficiency.

9. Teaching and Learning Strategies

The DC Motor Module can employ a variety of learning and teaching strategies to enhance understanding and engagement. Some suggested strategies include:

- 1. Lectures: Instructor-led lectures can provide an overview of key concepts, principles, and theories related to DC motors. This can serve as a foundation for further exploration.
- 2. Interactive Discussions: Engage learners in discussions to promote critical thinking and deeper understanding of the module topics. Encourage learners to ask questions, share their perspectives, and participate actively in group discussions.
- 3. Practical Demonstrations: Conduct practical demonstrations or laboratory sessions to illustrate the operation of DC motors, measurement techniques, and testing procedures. Hands-on activities can enhance understanding and provide real-world application experiences.
- 4. Simulations and Virtual Labs: Utilize interactive simulations or virtual laboratory environments to allow learners to experiment with DC motor operation, speed control, and performance evaluation. This can enhance their understanding of the concepts in a virtual environment.
- 5. Case Studies: Present case studies showcasing practical applications of DC motors in various industries. Analyze the motor requirements, challenges faced, and the solutions implemented. This will enable learners to connect theoretical knowledge to real-world scenarios.
- 6. Problem-solving Activities: Assign problem-solving activities related to DC motor operation, control, and performance. Encourage learners to apply their knowledge to solve complex problems, fostering critical thinking and problem-solving skills.
- 7. Group Projects: Divide learners into groups and assign them projects related to DC motors. This can involve designing motor control systems, optimizing motor performance, or developing innovative applications. This promotes teamwork, collaboration, and practical application of concepts.
- 8. Multimedia Resources: Utilize multimedia resources such as videos, animations, and interactive online modules to present complex concepts in an engaging and visual manner. This can enhance learner comprehension and retention.
- 9. Assessments: Include both formative and summative assessments to evaluate learner progress and understanding. This can include quizzes, assignments, practical demonstrations, and examinations.
- 10. Provide constructive feedback to help learners improve their understanding and performance. Guest Speakers: Invite industry professionals or experts to deliver guest lectures on topics related to DC motors. This exposes learners to real-world experiences and industry perspectives.

10.	Course	Structure			
Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	6	Introduction to the module and overview of engineering analysis techniques. Revision of first-order simultaneous differential equations.	Introduction to the module and overview of engineering analysis techniques. Revision of first-order simultaneous differential equations.	On-campus study	Quizzes
Week 2	6	Revision of second-order simultaneous differential equations. Fourier series for periodic functions of period 2π .	Revision of second-order simultaneous differential equations. Fourier series for periodic functions of period 2π .	On-campus study	Reports
Week 3	6	Fourier series for non-periodic functions over a range of 2. Even and odd functions and half-range Fourier series.	Fourier series for non-periodic functions over a range of 2. Even and odd functions and half-range Fourier series.	On-campus study	Assignments
Week 4	6	Fourier series over any range. Numerical methods of harmonic analysis.	Fourier series over any range. Numerical methods of harmonic analysis.	On-campus study	Quizzes
Week 5	6	Complex or exponential form of a Fourier series. Review and practice exercises.	Complex or exponential form of a Fourier series. Review and practice exercises.	On-campus study	Reports
Week 6	6	Introduction to Laplace transforms. Properties of Laplace transforms.	Introduction to Laplace transforms. Properties of Laplace transforms.	On-campus study	Assignments
Week 7	6	Laplace transform of functions. Initial and final value theorems.	Laplace transform of functions. Initial and final value theorems.	On-campus study	Quizzes
Week 8	6	Inverse Laplace transform. Inverse Laplace transform using partial fractions.	Inverse Laplace transform. Inverse Laplace transform using partial fractions.	On-campus study	Reports
Week 9	6	Solution of differential equations using Laplace transforms. Solution of simultaneous differential equations using Laplace transforms.	Solution of differential equations using Laplace transforms. Solution of simultaneous differential equations using Laplace transforms.	On-campus study	Assignments
Week 10	6	Application of Laplace transforms in the electrical engineering field. Review and practice exercises.	Application of Laplace transforms in the electrical engineering field. Review and practice exercises.	On-campus study	Quizzes
Week 11	6	Direct methods for solving linear algebraic systems: Matrix operations and the matrix inverse.	Direct methods for solving linear algebraic systems: Matrix operations and the matrix inverse.	On-campus study	Reports
Week 12	6	Gaussian elimination and pivoting. Backward error analysis and conditioning.	Gaussian elimination and pivoting. Backward error analysis and conditioning.	On-campus study	Assignments

Week 13	6	Indirect methods for solving linear algebraic systems: Jacob's method and Gauss-Seidel method.	Indirect methods for solving linear algebraic systems: Jacob's method and Gauss-Seidel method.	On-campus study	Quizzes
Week 14	6	Z-transform: Region of convergence and properties. Z-transform pairs.	Z-transform: Region of convergence and properties. Z-transform pairs.	On-campus study	Reports
Week 15	6	Inverse Z-transform and analysis of discrete-time systems. Application of Z-transforms in engineering analysis. Review, revision, and preparation for the final assessment.	Inverse Z-transform and analysis of discrete-time systems. Application of Z-transforms in engineering analysis. Review, revision, and preparation for the final assessment.	On-campus study	Assignments

			YAY ! 1 . (N. 1 .)	M. I.D.	Relevant Learning
As		Time/Number	Weight (Marks)	Week Due	Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

E. Kreyszig, "Advanced Engineering Mathematics," Wiley, 10th ed., 2011.

S. C. Chapra and R. P. Canale, "Numerical Methods for Engineers," McGraw-Hill Education, 7th ed., 2014.

Course Description Form

1. Course Name:

English Language (Intermediate)

2. Course Code:

MTU1003

3. Semester / Year:

First Semester of the Academic Year 2024-2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

50 H / 2 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims of English Language (Intermediate) are designed to help learners at the beginner level develop their English language skills and achieve specific learning objectives. While I don't have access to the specific module aims of this coursebook, I can provide you with a general outline of the typical aims for a beginner-level English course:

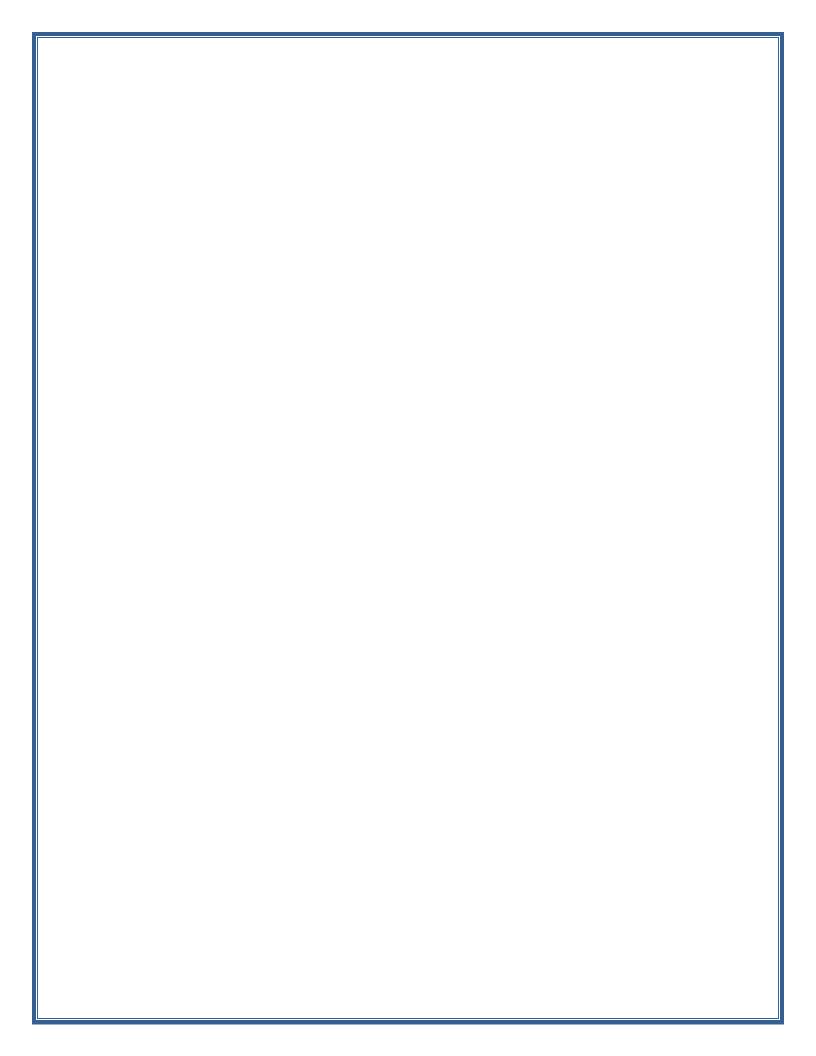
- 1. To introduce beginner-level learners to the English language, focusing on building vocabulary and acquiring essential language structures.
- 2. To develop listening and speaking skills through interactive activities and engaging in basic conversational practice.
- 3. To enhance reading comprehension abilities by introducing simple texts and emphasizing vocabulary and sentence structures.
- 4. To provide foundational writing skills, including sentence formation, paragraph writing, and completing basic forms.
- 5. To cultivate cultural awareness and equip learners with practical language skills for everyday situations, such as ordering food, shopping, and asking for directions.

9. Teaching and Learning Strategies

The learning and teaching strategies for the English Language (Beginner) module may include:

- 1. Interactive Language Practice: Engage learners in communicative activities that promote active participation and language practice. This can include pair work, group discussions, role-plays, and language games.
- 2. Authentic Materials: Incorporate authentic materials such as videos, audio recordings, and reading texts that reflect real-life language use. This helps learners develop their listening, speaking, reading, and writing skills in authentic contexts.
- 3. Task-Based Learning: Design tasks and projects that require learners to use the target language to accomplish specific goals or solve problems. This promotes meaningful language use and encourages critical thinking and problem-solving skills.
- 4. Visual Aids and Multimedia: Utilize visual aids, charts, diagrams, and multimedia resources to support language learning and comprehension. Visuals can enhance understanding, aid in vocabulary acquisition, and provide context for language use.
- 5. Error Correction and Feedback: Provide timely and constructive feedback on learners' language production to help them identify and correct errors. Encourage self-correction and peer correction to foster a supportive learning environment.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
Week 1	2	Famous couples.	Famous couples.	On-campus study	Quizzes


Week	2	Do's and Don'ts.	Do's and Don'ts.	On-campus	Reports
2				study	Reports
Week 3	2	Going places.	Going places.	On-campus study	Assignments
Week 4	2	Scared to death.	Scared to death.	On-campus study	Quizzes
Week 5	2	Things that changed the world.	Things that changed the world.	On-campus study	Reports
Week 6	2	Dreams and reality.	Dreams and reality.	On-campus study	Assignments
Week 7	2	Earning a living.	Earning a living.	On-campus study	Quizzes
Week 8	2	Love you and leave you.	Love you and leave you.	On-campus study	Reports
Week 9	2	it's a wonderful world!	it's a wonderful world!	On-campus study	Assignments
Week 10	2	Get happy.	Get happy.	On-campus study	Quizzes
Week 11	2	Telling tales.	Telling tales.	On-campus study	Reports
Week 12	2	Doing the right thing.	Doing the right thing.	On-campus study	Assignments
Week 13	2	on the move.	on the move.	On-campus study	Quizzes
Week 14	2	l just love.	l just love.	On-campus study	Reports
Week 15	2	The world of work.	The world of work.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 7
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-7
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-4
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

Soars, J., Soars, L. (2006). New Headway Plus: Pre-intermediate. United Kingdom: Oxford University Press.

Audio CDs or Online Audio: Recordings of listening exercises, dialogues, and pronunciation practice.

Course Description Form

1. Course Name:

Principles of Power Engineering

2. Course Code:

EET3101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

175 H / 7 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Principles of Power Engineering module are to:

- 1. Provide an understanding of the basic structure and components of a power system: The module aims to familiarize students with the key elements of a power system, including generators, transformers, transmission lines, and distribution networks. Students will gain knowledge about the functions and interconnections of these components within the overall power system.
- 2. Develop knowledge of overhead line insulators and their role in power transmission: Students will learn about the different types of insulators used in overhead power lines and their characteristics. They will understand the importance of insulators in maintaining electrical insulation and preventing current leakage, ensuring safe and reliable power transmission.
- 3. Explain the phenomenon of corona discharge and its implications: The module aims to provide an understanding of corona discharge, including its causes and effects on power transmission. Students will learn about the impact of corona on power loss, radio interference, and equipment reliability. They will also explore mitigation techniques to minimize corona effects.
- 4. Understand sag in overhead lines and its significance: Students will gain knowledge about sag, which refers to the vertical displacement of overhead line conductors. They will learn about the factors influencing sag and its implications for line clearance, mechanical stress, and electrical performance. The module aims to develop skills in calculating and managing sag for optimal line operation.
- 5. Explore line inductance and capacitance in power transmission: Students will gain an understanding of the concepts of line inductance and capacitance. They will learn about the calculation methods for determining inductance and capacitance in transmission lines and their effects on voltage regulation, power transfer capability, and system stability.
- 6. Discuss different types of transmission lines based on length: The module aims to introduce students to short, medium, and long transmission lines and their characteristics. Students will understand the design considerations, performance parameters, and challenges associated with each type of transmission line.

9. Teaching and Learning Strategies

- 1. Lectures: Traditional lectures can be used to deliver theoretical concepts, provide an overview of key topics, and present complex information. Lectures can be enhanced with visual aids, multimedia presentations, and real-life examples to promote active learning.
- 2. Practical Demonstrations: Hands-on practical demonstrations and experiments can be conducted to illustrate the principles of power engineering. This can include laboratory sessions where students can work with power equipment, conduct measurements, and observe the behavior of power systems under different conditions.
- 3. Case Studies: Case studies can be utilized to apply theoretical knowledge to real-world scenarios. Students can analyze and solve practical problems related to power system design, operation, and optimization. Case studies can also provide insights into industry practices and challenges.
- 4. Group Projects: Group projects can encourage collaboration and teamwork. Students can work together to tackle complex power engineering problems, such as designing a transmission line or analyzing the performance of a power system. This strategy promotes critical thinking, problem-solving skills, and communication within a team.
- 5. Computer Simulations: Computer simulations and modeling software can be used to simulate power system behavior and analyze various scenarios. Students can use these tools to perform load flow analysis,
- 6. voltage regulation, and stability studies. Simulations provide a hands-on experience and enable students to observe the impact of different parameters on power system performance.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	7	Introduction to Power System Laboratory. Safety protocols and laboratory guidelines. Introduction to laboratory equipment and tools. Familiarization with measurement instruments.	Introduction to Power Systems. Basic structure and components of a power system. Power generation, transmission, and distribution. Importance of reliable and efficient power systems.	On-campus study	Quizzes
Week 2	6	Overhead Line Insulators Laboratory. Testing and characterization of different types of insulators. Measurement of insulation resistance. Practical demonstrations of insulator stringing techniques.	Overhead Line Insulators. Types and materials of insulators. Insulator characteristics and selection criteria. Insulator stringing and electrical insulation principles.	On-campus study	Reports
Week 3	7	Corona Discharge Laboratory. Observation and measurement of corona discharge phenomena. Corona detection methods and equipment. Evaluation of corona mitigation techniques.	Corona Discharge. Causes and effects of corona discharge. Factors influencing corona formation. Mitigation techniques and corona control measures.	On-campus study	Assignments
Week 4	7	Sag in Overhead Lines Laboratory.	Sag in Overhead Lines. Factors affecting sag in power	On-campus study	Quizzes

		Measurement of sag in overhead lines using various methods. Calculation of sag under different load and temperature conditions. Practical exercises on sag correction and maintenance.	lines. Sag calculation methods. Sag monitoring and maintenance practices.		
Week 5	7	Line Parameters Measurement Laboratory. Measurement of line inductance using different techniques. Calculation of line inductance based on measured data. Measurement of line capacitance and calculation of charging current.	Line Inductance. Concept of line inductance and its significance. Calculation methods for line inductance. Impact of line inductance on power flow and system stability.	On-campus study	Reports
Week 6	7	Short Transmission Lines Laboratory. Analysis of transmission line characteristics through practical experiments. Measurement of line impedance and admittance. Evaluation of transmission line performance parameters.	Line Capacitance. Understanding line capacitance and its effects. Calculation methods for line capacitance. Influence of line capacitance on line charging current, power factor, and transient behavior.	On-campus study	Assignments
Week 7	7	Medium Transmission Lines Laboratory. Simulation and analysis of medium transmission line models using software tools. Study of transmission line parameters and performance under different load conditions. Practical exercises on line impedance matching and impedance transformation.	Short Transmission Lines. Characteristics and design considerations of short transmission lines. Performance parameters and challenges of short transmission lines.	On-campus study	Quizzes
Week 8	7	Long Transmission Lines Laboratory. Investigation of the behavior of long transmission lines using simulation software. Analysis of power transfer capabilities and voltage regulation in long lines. Practical exercises on the design and optimization of long transmission lines.	Medium Transmission Lines. Characteristics and design considerations of medium transmission lines. Performance parameters and challenges of medium transmission lines.	On-campus study	Reports
Week 9	7	Power System Simulation Laboratory. Introduction to power system simulation software. Load flow analysis and voltage regulation using simulation tools. Stability analysis and transient	Long Transmission Lines. Characteristics and design considerations of long transmission lines. Performance parameters and challenges of long transmission lines.	On-campus study	Assignments

		response simulation.			
		Protection and Control	Power System Analysis - Load		
		Laboratory.	Flow Analysis.		
		Study of protective relays and	Introduction to load flow		
		their applications in power	analysis.		
Week	7	systems.	Voltage regulation and power	On-campus	Quizzes
10	,	Testing and calibration of	factor correction.	study	Quilles
		protective relays.	Load flow calculation		
		Hands-on exercises on power	methods and software tools.		
		system control and monitoring.	inethous and software tools.		
		Renewable Energy Integration	Power System Analysis -		
		Laboratory.	Stability Analysis.		
		Analysis of renewable energy	Introduction to stability		
		generation systems.	analysis.		
Week	7	Simulation of renewable energy	Transient stability and	On-campus	Doports
11	/			study	Reports
		integration in power systems.	steady-state stability.		
		Evaluation of control strategies	Stability assessment and		
		for optimal renewable energy	control techniques.		
		utilization.	D El C : 1 1		
		Smart Grids and Advanced	Power Flow Control and		
		Control Laboratory.	Optimization.		
		Introduction to smart grid	Reactive power control		
*** 1		technologies and components.	methods.	0	
Week	7	Implementation and testing of	Optimal power flow analysis	On-campus	Assignments
12	,	advanced control algorithms in	and optimization techniques.	study	
		power systems.	Voltage stability and control		
		Study of communication	strategies.		
		protocols and data management			
		in smart grids.	D		
		Power System Stability	Renewable Energy		
		Laboratory.	Integration.		
		Investigation of power system	Integration of renewable		
		stability using simulation	energy sources into power systems.		
Week	7	software.	Challenges and opportunities	On-campus	Onizzos
13	/	Analysis of transient stability and	in renewable energy	study	Quizzes
		voltage stability.	35		
		Evaluation of stability	integration. Power system planning and		
		enhancement techniques and			
		control strategies.	operation with renewable		
		Fault Analysis and Dratastian	energy. Emerging Technologies and		
		Fault Analysis and Protection	Future Trends.		
		Laboratory. Study of fault detection,	Overview of emerging		
		localization, and clearing in	technologies in power		
Week		power systems.	engineering.	On-campus	
14	7	Simulation of fault scenarios and	Smart grids and advanced	-	Reports
14		analysis of protection schemes.	power system control and	study	
		Testing and calibration of	monitoring.		
		protective devices for fault	Power system resilience and		
		1 ~	cybersecurity considerations.		
		management.			
		Review and Project	Review and Case Studies.		
Week	7	Presentations.	Review of key concepts and	On-campus	Aggianmanta
15	/	Review of laboratory	topics covered.	study	Assignments
		experiments and concepts	Discussion of case studies and		
	l	covered throughout the module.	real-world applications.		

Group project presentations on selected power engineering		
topics.		
Discussion and reflection on the		
laboratory experience.		

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

J. D. Glover, M. S. Sarma, and T. J. Overbye, "Power System Analysis and Design," 6th ed., Boston, MA: Cengage Learning, 2017.

A. von Meier, "Electric Power Systems: A Conceptual Introduction," Hoboken, NJ: Wiley, 2006.

Course Description Form

1	_	N T
	Course	Namai
1.	COULSE	maine.

DC Power Conversions

2. Course Code:

EET3102

3. Semester / Year:

First Semester of the Academic Year 2024-2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the DC Power Converter module can include:

- 1. To understand the construction and characteristics of power semiconductor devices, particularly thyristors, used in DC power converters.
- 2. To grasp the fundamentals of thyristors, including their working principles, turn-on and turn-off methods, and the functioning of thyristor firing circuits.
- 3. To familiarize themselves with the various types of thyristors within the thyristor family and their specific applications. Additionally, to comprehend thyristor ratings and their importance in ensuring safe and reliable operation.
- 4. To comprehend the principles of operation of AC to DC converters, specifically phase-controlled converters. This includes studying different converter configurations for converting AC power to DC power, such as single-phase and three-phase half-wave and full-wave converters, as well as techniques for power factor improvement.
- 5. To gain a solid understanding of DC to DC converters, including the basic principles of DC choppers. This involves learning about the different types of choppers, their classification, and the control strategies employed to regulate output voltage or current.

9. Teaching and Learning Strategies

The learning and teaching strategies for the DC Power Converter module may include:

- 1. Lectures: Conduct engaging lectures to present fundamental concepts, theories, and principles. Use visual aids, such as diagrams and illustrations, to enhance understanding and provide real-world examples to illustrate the applications of power converters.
- 2. Problem-Based Learning: Incorporate problem-solving activities that require students to apply their knowledge of power converters to solve practical problems. Present them with real-world scenarios or case studies and encourage them to analyze, design, and optimize power converter circuits.
- 3. Hands-on Lab Experiments: Organize laboratory sessions where students can build and test power converter circuits. This hands-on experience allows them to observe the behavior of power semiconductor devices and verify theoretical concepts. Provide guidance and facilitate discussions during the experiments.
- 4. Group Projects: Assign group projects that involve designing and implementing power converter systems for specific applications. Encourage collaboration and division of tasks among group members. This approach promotes teamwork, problem-solving skills, and critical thinking.
- 5. Simulation and Modeling: Utilize computer simulations or modeling software to demonstrate the behavior and performance of power converters. Students can simulate different converter topologies, control strategies, and load conditions to observe their effects and make performance comparisons. Guide them in analyzing and interpreting simulation results.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning	Evaluation
				method	method
Week 1	6	Introduction to Power System Laboratory. Safety protocols and laboratory guidelines. Introduction to laboratory equipment and tools. Familiarization with measurement instruments.	Introduction to Power Semiconductor Devices Overview of power semiconductor devices Characteristics and specifications of power semiconductor devices	On-campus study	Quizzes
Week	6	Overhead Line Insulators Laboratory.	Thyristor Fundamentals	On-campus	Reports

2		Testing and characterization of different types of insulators. Measurement of insulation resistance. Practical demonstrations of insulator stringing techniques.	Structure and construction of thyristors Operation principles of thyristors	study	
Week 3	6	Corona Discharge Laboratory. Observation and measurement of corona discharge phenomena. Corona detection methods and equipment. Evaluation of corona mitigation techniques.	Thyristor Turn-On and Turn-Off Methods Gate triggering techniques Natural and forced commutation methods	On-campus study	Assignments
Week 4	6	Sag in Overhead Lines Laboratory. Measurement of sag in overhead lines using various methods. Calculation of sag under different load and temperature conditions. Practical exercises on sag correction and maintenance.	Thyristor Firing Circuits Basic firing circuit designs Gate pulse generation techniques	On-campus study	Quizzes
Week 5	6	Line Parameters Measurement Laboratory. Measurement of line inductance using different techniques. Calculation of line inductance based on measured data. Measurement of line capacitance and calculation of charging current.	Thyristor Ratings and Protection Understanding thyristor ratings Protection methods against overcurrent and overvoltage	On-campus study	Reports
Week 6	6	Short Transmission Lines Laboratory. Analysis of transmission line characteristics through practical experiments. Measurement of line impedance and admittance. Evaluation of transmission line performance parameters.	Single-Phase Half-Wave Converter Principle of operation Analysis of waveforms and voltage/current calculations	On-campus study	Assignments
Week 7	6	Medium Transmission Lines Laboratory. Simulation and analysis of medium transmission line models using software tools. Study of transmission line parameters and performance under different load conditions. Practical exercises on line impedance matching and impedance transformation.	Single-Phase Full-Wave Converter Principle of operation Analysis of waveforms and voltage/current calculations	On-campus study	Quizzes
Week 8	6	Long Transmission Lines Laboratory. Investigation of the behavior of long transmission lines using simulation software. Analysis of power transfer capabilities and voltage regulation in long lines.	Three-Phase Half-Wave Converter Principle of operation Analysis of waveforms and voltage/current calculations	On-campus study	Reports

		Practical exercises on the design and optimization of long transmission lines.			
Week 9	6	Power System Simulation Laboratory. Introduction to power system simulation software. Load flow analysis and voltage regulation using simulation tools. Stability analysis and transient response simulation.	Three-Phase Full-Wave Converter Principle of operation Analysis of waveforms and voltage/current calculations	On-campus study	Assignments
Week 10	6	Protection and Control Laboratory. Study of protective relays and their applications in power systems. Testing and calibration of protective relays. Hands-on exercises on power system control and monitoring.	Power Factor Improvement in AC to DC Conversion Power factor definition and importance Techniques for power factor improvement (e.g., power factor correction circuits)	On-campus study	Quizzes
Week 11	6	Renewable Energy Integration Laboratory. Analysis of renewable energy generation systems. Simulation of renewable energy integration in power systems. Evaluation of control strategies for optimal renewable energy utilization.	Introduction to DC-DC Converters (Choppers) Basic principles and classification of DC choppers Control strategies for DC choppers (e.g., pulse width modulation)	On-campus study	Reports
Week 12	6	Smart Grids and Advanced Control Laboratory. Introduction to smart grid technologies and components. Implementation and testing of advanced control algorithms in power systems. Study of communication protocols and data management in smart grids.	Buck and Boost Choppers Operation and analysis of buck and boost choppers Control strategies and performance evaluation	On-campus study	Assignments
Week 13	6	Power System Stability Laboratory. Investigation of power system stability using simulation software. Analysis of transient stability and voltage stability. Evaluation of stability enhancement techniques and control strategies.	Buck-Boost and Cuk Choppers Operation and analysis of buck-boost and Cuk choppers Control strategies and performance evaluation	On-campus study	Quizzes
Week 14	6	Fault Analysis and Protection Laboratory. Study of fault detection, localization, and clearing in power systems. Simulation of fault scenarios and analysis of protection schemes. Testing and calibration of protective devices for fault management.	Control Strategies for Power Converters Pulse width modulation (PWM) control Current mode control Constant frequency control	On-campus study	Reports
Week 15	6	Review and Project Presentations. Review of laboratory experiments and concepts covered throughout the	Emerging Trends and Future Developments Latest trends in power	On-campus study	Assignments

module.	semiconductor devices	
Group project presentations on	and converter topologies	
selected power engineering topics.	Potential applications	
Discussion and reflection on the	and future developments	
laboratory experience.	in power conversion	

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	LO # 1-14
	Report	14	10% (10)	Continuous	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

N. Mohan, T. M. Undeland, and W. P. Robbins, "Power Electronics: Converters, Applications, and Design." Hoboken, NJ: Wiley, 2003.

R. M. Mathur and R. K. Varma, "Thyristor-Based FACTS Controllers for Electrical Transmission Systems." Hoboken, NJ: Wiley, 2002.

Course Description Form

1. Course Name:

Electrical Transformers and Induction Machines

2. Course Code:

EET3103

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The "Electrical Transformers and Induction Machines" module aims to achieve the following objectives:

To achieve the aims of the "Electrical Transformers and Induction Machines" module, the following steps will be taken:

- 1. To understand the basic construction and functioning of power transformers:
- Familiarize students with the components and working principles of power transformers.
- Explain the importance of core materials, winding arrangements, and cooling systems in transformer design.
- 2. To comprehend the theory and operation of transformers:
- Introduce the theory of an ideal transformer and its fundamental principles.
- Explain the concept of turns ratio, voltage transformation, and power relationships in transformers.
- 3. To perform and analyze transformer tests:
- Equip students with the knowledge of various transformer tests, such as open-circuit, short-circuit, and impedance tests.
- Develop the skills to conduct these tests and interpret the results to evaluate transformer performance and characteristics.
- 4. To understand the operation and control of transformers in power systems:
- Explain the principles and considerations for parallel operation of transformers.
- Discuss the advantages, limitations, and applications of auto-transformers.
- 5. To understand the basic construction and principles of induction motors:
- Introduce students to the components and construction of induction motors.
- Explain the principles of electromagnetism and induction that form the foundation of induction motor operation.
- 6. To comprehend the theory of electromagnetic induction and its application in induction motors:
- Introduce the concept of rotating magnetic fields and the notion of slip.
- Explain torque production and the fundamental principles of motor operation.
- 7. To explore various aspects of induction motors, including speed control methods and motor testing:
- Discuss different methods of speed control, such as changing the number of poles and stator voltage control.
- Cover motor testing techniques, including no-load tests, blocked-rotor tests, and efficiency measurement.
- 8. To understand single-phase induction motors and linear induction machines:
- Explain the working principles and construction of single-phase induction motors.
- Introduce linear induction machines and their basic principles, operating principles, applications, advantages, and challenges.

9. Teaching and Learning Strategies

The "Electrical Transformers and Induction Machines" module can be effectively delivered using a combination of learning and teaching strategies. Some of the strategies that can be employed are:

- 1. Lectures: Conduct interactive lectures to introduce theoretical concepts, principles, and fundamental knowledge related to transformers and induction motors. Use visual aids, examples, and real-life applications to enhance understanding.
- 2. Practical Demonstrations: Organize practical demonstrations to showcase the construction, operation, and testing of transformers and induction motors. This hands-on approach will help students visualize and apply theoretical concepts in a practical setting.

- 3. Case Studies: Present case studies that involve real-world applications of transformers and induction motors. Analyze and discuss the challenges faced, design considerations, and solutions employed, enabling students to connect theory with practical scenarios.
- 4. Group Discussions: Encourage group discussions and collaborative learning among students. Assign topics or problem-solving tasks related to transformers and induction motors for group discussions, promoting critical thinking and peer learning.
- 5. Laboratory Sessions: Conduct laboratory sessions where students can perform transformer tests and motor testing. This practical experience will enhance their skills in conducting tests, analyzing results, and troubleshooting.
- 6. Simulations and Virtual Labs: Utilize computer-based simulations and virtual lab environments to simulate transformer and motor operations. This enables students to explore different scenarios, conduct experiments, and visualize the effects of parameter variations.
- 7. Guest Lectures: Invite industry experts or professionals from the field of electrical engineering to deliver guest lectures. Their insights, experiences, and practical knowledge will provide valuable perspectives and enhance students' understanding of real-world applications.
- 8. Assignments and Projects: Assign individual or group assignments and projects related to transformers and induction motors. This encourages independent research, critical thinking, and problem-solving skills development.
- 9. Online Resources: Provide access to online resources such as e-books, articles, videos, and interactive tutorials. These resources can supplement classroom teaching and allow students to explore the topics at their own pace.
- 10. Assessments: Design formative and summative assessments to evaluate students' understanding of the concepts covered. Use a variety of assessment methods, including quizzes, exams, practical tests, and project evaluations, to assess both theoretical knowledge and practical skills.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to Lab Equipment and Safety Introduction to lab equipment and tools used in transformer and motor testing. Lab safety procedures and protocols.	Introduction to Transformers Basic construction and components of power transformers. Core materials, winding arrangements, and cooling systems. Transformer ratings and specifications.	On-campus study	Quizzes
Week 2	5	Transformer Testing - Open-Circuit and Short-Circuit Tests Perform open-circuit and short-circuit tests on a power transformer. Measure and record the data. Analyze the test results and calculate transformer parameters.	Theory of Transformers Ideal transformer theory and principles. Turns ratio, voltage transformation, and power relationships. Equivalent circuit model of a loaded transformer.	On-campus study	Reports
Week 3	5	Transformer Testing - Impedance Test Perform an impedance test on a power transformer. Measure and record the data.	Transformer Testing Open-circuit, short-circuit, and impedance tests. Analysis and interpretation of transformer test results.	On-campus study	Assignments

		Analyze the test results and evaluate transformer performance.	Evaluation of transformer performance and characteristics.		
Week 4	5	Motor Testing - No-Load Test Perform a no-load test on an induction motor. Measure and record the data. Calculate motor parameters and efficiency.	Transformer Operation and Control Parallel operation of transformers: principles and considerations. Advantages, limitations, and applications of autotransformers.	On-campus study	Quizzes
Week 5	5	Induction Motor Testing - Blocked-Rotor Test Perform a blocked-rotor test on an induction motor. Measure and record the data. Calculate motor parameters and determine the torque-speed characteristics.	Introduction to Induction Motors Construction and components of induction motors. Principles of electromagnetism and induction. Types and applications of induction motors.	On-campus study	Reports
Week 6	5	Induction Motor Testing - Load Test Perform a load test on an induction motor. Measure and record the data at different load conditions. Analyze the test results and evaluate motor performance.	Theory of Induction Motors Electromagnetic induction and Faraday's laws in the context of induction motors. Rotating magnetic fields and the concept of slip. Torque production and motor operation principles	On-campus study	Assignments
Week 7	5	Temperature Rise Test Perform a temperature rise test on a transformer or induction motor. Measure and record the temperatures at different points. Analyze the data and evaluate the thermal performance.	Three-Phase Induction Motors Three-phase power supply and advantages for induction motors. Squirrel cage and wound rotor designs. Torque-speed characteristics and performance curves.	On-campus study	Quizzes
Week 8	5	Insulation Testing Perform insulation tests on transformers and induction motors. Use appropriate testing equipment to measure insulation resistance and detect any insulation faults.	Equivalent Circuit of Induction Motor Components of the equivalent circuit. Resistive, inductive, and leakage parameters. Voltage and current relationships in the circuit.	On-campus study	Reports
Week 9	5	Parallel Operation of Transformers Simulate the parallel operation of transformers using lab equipment. Study the effects of parallel operation on voltage, current, and load sharing.	Power Relations in Induction Motors Active power, reactive power, and apparent power. Power factor and power factor improvement techniques.	On-campus study	Assignments

			Power flow and losses in		
			induction motors.		
Week 10	5	Autotransformer Operation and Control Experiment with autotransformers and study their operation and control mechanisms. Analyze the advantages and limitations of autotransformers.	Methods of Starting of Induction Motors Direct-on-line (DOL) starting. Star-delta starting. Autotransformer starting. Soft starters and variable frequency drives (VFDs).	On-campus study	Quizzes
Week 11	5	Variable Frequency Drive (VFD) Control Use a variable frequency drive to control the speed of an induction motor. Study the impact of varying the frequency on motor performance.	Induction Motor Tests No-load test and blocked- rotor test. Load test and efficiency measurement. Temperature rise test and insulation tests.	On-campus study	Reports
Week 12	5	Motor Starting Methods Experiment with different motor starting methods, such as direct- on-line (DOL), star-delta, and autotransformer starting. Compare and analyze the performance of each starting method.	Speed Control of Induction Motors Changing the number of poles. Stator voltage control. Frequency control using variable frequency drives (VFDs).	On-campus study	Assignments
Week 13	5	Single-Phase Induction Motor Operation Study the operation and characteristics of single-phase induction motors. Perform experiments to analyze their performance and applications.	Single-Phase Induction Motors Working principles and construction. Types of single-phase induction motors. Applications and limitations of single-phase motors.	On-campus study	Quizzes
Week 14	5	Linear Induction Machine Experiment with a linear induction machine setup. Study its operating principles and characteristics. Explore its applications in transportation and linear motion systems.	Linear Induction Machines Basic principles and operating principles. Applications in transportation and linear motion systems. Advantages and challenges of linear induction machines.	On-campus study	Reports
Week 15	5	Lab Report Preparation and Discussion Prepare lab reports summarizing the experiments conducted throughout the module. Discuss the findings, analyze the results, and draw conclusions.	Review and Recapitulation Review of key concepts and principles. Recapitulation of transformer and induction motor operations. Discussion of practical applications and real-world examples.	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	LO # 1-14
	Report	14	10% (10)	Continuous	LO # 1-14
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

Austin Hughes, Bill Drury, and Edwin Wright, "Electric Motors and Drives: Fundamentals, Types and Applications," 4th edition. Newnes, 2013.

W. G. Hurley and W. H. Wölfle, "Transformers and Inductors for Power Electronics: Theory, Design and Applications." Wiley-IEEE Press, 2013.

Course Description Form

1. Course Name:

Electromagnetic Fields

2. Course Code:

EET3104

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Electromagnetic Fields module aims to:

- 1. To develop a solid foundation in vector algebra and coordinate systems used in electromagnetics.
- 2. To familiarize students with fundamental concepts such as Coulomb's law, electric field intensity,

electric flux density, and Gauss's law to comprehend the behavior and properties of electric fields.

- 3. To introduce the concepts of magnetic field intensity, magnetic flux density, Biot-Savart's law, Ampere's law, and curl to provide a thorough understanding of magnetic fields and their interactions.
- 4. To explore the principles of energy potential, energy density, resistance, capacitance, and inductance, enabling students to analyze and design electrical circuits and systems.
- 5. To equip students with a solid understanding of Maxwell's equations, Faraday's law, displacement current, and their application in potential and integral form, allowing for the study of electromagnetic waves, propagation, and radiation in various media.

9. Teaching and Learning Strategies

The Electromagnetic Fields module can be taught using a variety of learning and teaching strategies to engage students and facilitate their understanding of the subject matter. Some effective strategies include:

- 1. Lectures: Conducting lectures to deliver theoretical concepts, principles, and mathematical derivations associated with electromagnetic fields. Lectures can be supported by visual aids such as slides, diagrams, and demonstrations to enhance comprehension.
- 2. Practical Sessions: Providing hands-on practical sessions where students can perform experiments related to electric and magnetic fields, measure field parameters, and verify theoretical concepts. This allows students to apply theoretical knowledge in a practical setting and develop their problem-solving skills.
- 3. Problem-Solving Sessions: Organizing problem-solving sessions or tutorials to work through exercises and examples that apply the principles learned in class. This helps students develop their analytical and problem-solving abilities and reinforces their understanding of electromagnetic field concepts.
- 4. Interactive Discussions: Encouraging interactive discussions, both in-class and online, where students can ask questions, share their perspectives, and engage in peer-to-peer learning. This fosters active participation and deeper understanding of the subject matter.
- 5. Computer Simulations and Modeling: Utilizing computer simulations and modeling tools to visualize and analyze electromagnetic phenomena. This enables students to explore complex scenarios, observe real-time behavior, and develop a deeper intuition for electromagnetic field concepts.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to the module: overview of the course objectives, assessment methods, and resources. Vector algebra review: vector operations, dot product, cross product, and coordinate systems.	Introduction to the module: overview of the course objectives, assessment methods, and resources. Vector algebra review: vector operations, dot product, cross product, and coordinate systems.	On-campus study	Quizzes
Week 2	5	Coulomb's law: understanding the force between electric charges. Electric field intensity: definition, calculation, and superposition principle.	Coulomb's law: understanding the force between electric charges. Electric field intensity: definition, calculation, and superposition principle.	On-campus study	Reports
Week 3	5	Electric flux density: introduction to electric flux and its relationship with electric fields. Gauss's law: application of	Electric flux density: introduction to electric flux and its relationship with electric fields. Gauss's law: application of	On-campus study	Assignments

		Gauss's law to calculate electric	Gauss's law to calculate		
		fields for different charge	electric fields for different		
		distributions.	charge distributions.		
Week 4	5	Divergence and gradient: understanding divergence and gradient operators in vector calculus. Energy potential and energy density in electric fields: calculating electric potential and energy associated with electric fields.	Divergence and gradient: understanding divergence and gradient operators in vector calculus. Energy potential and energy density in electric fields: calculating electric potential and energy associated with electric fields.	On-campus study	Quizzes
Week 5	5	Current density and electric boundary conditions: introduction to current density and its role in determining electric boundary conditions. Resistance and capacitance: calculations and applications of resistance and capacitance in circuits.	Current density and electric boundary conditions: introduction to current density and its role in determining electric boundary conditions. Resistance and capacitance: calculations and applications of resistance and capacitance in circuits.	On-campus study	Reports
Week 6	5	Poisson's and Laplace's equations: understanding and solving Poisson's and Laplace's equations in electrostatics. Examples and applications of Poisson's and Laplace's equations.	Poisson's and Laplace's equations: understanding and solving Poisson's and Laplace's equations in electrostatics. Examples and applications of Poisson's and Laplace's equations.	On-campus study	Assignments
Week 7	5	Biot-Savart law and Ampere's law: calculations of magnetic fields due to steady currents. Curl and its applications in electromagnetics.	Biot-Savart law and Ampere's law: calculations of magnetic fields due to steady currents. Curl and its applications in electromagnetics.	On-campus study	Quizzes
Week 8	5	Magnetic field intensity and magnetic flux density: understanding the concepts and calculations. Scalar and vector magnetic potential: introduction to magnetic potentials and their applications.	Magnetic field intensity and magnetic flux density: understanding the concepts and calculations. Scalar and vector magnetic potential: introduction to magnetic potentials and their applications.	On-campus study	Reports
Week 9	5	Magnetic force and magnetic boundary conditions: calculations of magnetic forces on current-carrying conductors. Inductance and its applications in circuits.	Magnetic force and magnetic boundary conditions: calculations of magnetic forces on current-carrying conductors. Inductance and its applications in circuits.	On-campus study	Assignments
Week 10	5	Faraday's law and displacement current: understanding electromagnetic induction and displacement current. Maxwell's equations in potential	Faraday's law and displacement current: understanding electromagnetic induction and displacement current.	On-campus study	Quizzes

		form.	Maxwell's equations in		
			potential form.		
Week 11	5	Maxwell's equations in integral form: deriving and understanding the integral forms of Maxwell's equations. Electromagnetic waves in free space: propagation characteristics and wave equations.	Maxwell's equations in integral form: deriving and understanding the integral forms of Maxwell's equations. Electromagnetic waves in free space: propagation characteristics and wave equations.	On-campus study	Reports
Week 12	5	Electromagnetic waves in dielectrics: behavior and properties of electromagnetic waves in dielectric materials. Wave propagation in good conductors: skin effect and wave attenuation.	Electromagnetic waves in dielectrics: behavior and properties of electromagnetic waves in dielectric materials. Wave propagation in good conductors: skin effect and wave attenuation.	On-campus study	Assignments
Week 13	5	Pointing vector and electromagnetic radiation: understanding the flow of electromagnetic energy. Reflection of electromagnetic waves at interfaces.	Pointing vector and electromagnetic radiation: understanding the flow of electromagnetic energy. Reflection of electromagnetic waves at interfaces.	On-campus study	Quizzes
Week 14	5	Antennas and their applications: principles of antenna design and radiation patterns. Propagation of electromagnetic waves in different media.	Antennas and their applications: principles of antenna design and radiation patterns. Propagation of electromagnetic waves in different media.	On-campus study	Reports
Week 15	5	Revision and recap of key concepts covered in the module. Final assessment and feedback.	Revision and recap of key concepts covered in the module. Final assessment and feedback.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	15	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment		100% (100 Marks)		

12. Learning and Teaching Resources

W. H. Hayt Jr. and J. A. Buck, "Engineering Electromagnetics," 8th ed. New York, NY, USA: McGraw-Hill, 2011.

D. J. Griffiths, "Introduction to Electrodynamics," 4th ed. Upper Saddle River, NJ, USA: Pearson, 2013.

Course Description Form

1. Course Name:

Microprocessor

2. Course Code:

EET3105

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

100 H / 4 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

Module Aims:

- 1. Understand the fundamentals of microprocessors and their significance in computer systems. Gain knowledge of the historical development of INTEL processors and different types of computers.
- 2. Familiarize oneself with the architecture of the 8086 microprocessor. Learn about the microarchitecture, software model, and the roles of the Execution Unit (EU) and Bus Interface Unit (BIU).
- 3. Explore the memory operation in microprocessors. Gain an understanding of various memory types such as RAM and ROM, their characteristics, configuration, segments, and design. Learn about the memory interface and its importance.
- 4. Comprehend the pin configuration of microprocessors, including the demultiplexing of data and address lines. Understand the function and description of each pin. Differentiate between the minimum and maximum modes of operation.
- 5. Gain practical knowledge of machine and assembly language programming for microprocessors. Understand the benefits of assembly language and how instructions are converted to machine language. Explore various addressing modes, instruction sets, and programming techniques. Learn about input/output ports and the design considerations involved. Finally, grasp the concept of interrupt mechanisms in microprocessors.

9. Teaching and Learning Strategies

Learning and Teaching Strategies:

- 1. Lectures: Engage students through informative lectures that cover the theoretical aspects of microprocessors, their architecture, and programming techniques. Provide clear explanations and examples to enhance understanding.
- 2. Practical Demonstrations: Conduct practical demonstrations to illustrate concepts such as pin configurations, memory operations, and input/output port design. This hands-on approach allows

students to visualize and apply their knowledge.

- 3. Laboratory Sessions: Provide laboratory sessions where students can work on microprocessor-based projects. This hands-on experience helps them gain practical skills in assembly language programming, memory interfacing, and input/output operations.
- 4. Case Studies: Present real-world case studies to showcase the application of microprocessors in different industries or sectors. This allows students to understand the practical implications and challenges faced in implementing microprocessor-based systems.
- 5. Group Discussions and Problem-Solving Activities: Encourage group discussions and problem-solving activities to promote active learning and critical thinking. Engage students in analyzing and solving complex problems related to microprocessors and their programming.

Tutorials: Conduct tutorials to reinforce understanding and provide additional support. These sessions allow students to ask questions, clarify concepts, and practice problem-solving with the guidance of the instructor.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning	Evaluation
				method	method
Week 1	5	Introduction to Microprocessors and Assembly Language Writing a program to display a simple message on an LED display. Using assembly language instructions to perform basic arithmetic calculations.	Introduction to Microprocessors and Computers: Overview of microprocessors and their significance. Historical development of INTEL processors and types of computers.	On-campus study	Quizzes
Week 2	5	8086 Microprocessor Architecture and Instruction Set Implementing a program to add two numbers and display the result. Exploring the effects of different addressing modes on program execution.	Architecture of the 8086 Microprocessor: Micro-architecture of the 8086 microprocessor. Software model of the 8086 microprocessor. Execution Unit (EU) and Bus Interface Unit (BIU).	On-campus study	Reports
Week 3	5	Memory Interfacing and Data Transfer Writing a program to store and retrieve data from memory locations. Implementing data transfer operations between registers and memory.	Memory Operation: Types of memory: RAM and ROM. Characteristics, configurations, and design of RAM and ROM. Memory size, configuration, segments, and design concepts.	On-campus study	Assignments
Week 4	5	Arithmetic and Logic Operations Performing basic arithmetic calculations (addition, subtraction, multiplication) using the microprocessor. Implementing logical operations (AND, OR, XOR) on binary numbers.	Pin Configuration: Demultiplexing of data and address lines. Detailed description of each pin and its functions. Minimum and maximum modes of operation.	On-campus study	Quizzes
Week 5	5	Control Flow and Subroutines Writing a program to implement a simple loop and display a count on	Machine and Assembly Language Programming (Part 1):	On-campus study	Reports

		an output device. Creating and calling subroutines to perform repetitive tasks.	Introduction to assembly language programming. Instruction set and addressing modes. Data transfer instructions.		
Week 6	5	Input/Output Operations Interfacing with a push-button switch and controlling an LED based on its state. Reading data from a keypad and displaying it on a 7-segment display.	Machine and Assembly Language Programming (Part 2): Arithmetic and logic operations. Shift and rotate instructions. String instructions.	On-campus study	Assignments
Week 7	5	Interrupt Handling Configuring and handling interrupts from external devices such as buttons or sensors. Implementing an interrupt-driven program to respond to specific events.	Input/Output Ports: Design considerations for input and output ports. Types of input and output devices.	On-campus study	Quizzes
Week 8	5	Memory Segmentation and Data Storage Storing and retrieving data in different memory segments using segment registers. Accessing specific segments of memory for different program requirements.	Interrupt Mechanism: Introduction to interrupt mechanisms in microprocessors. Interrupt handling and prioritization.	On-campus study	Reports
Week 9	5	Stack Operations and Parameter Passing Implementing a stack-based program to reverse a string of characters. Passing parameters between subroutines using the stack.	Memory Interface: Interfacing memory with the microprocessor. Addressing modes for memory access.	On-campus study	Assignments
Week 10	5	Timers and Counters Generating time delays using the microprocessor's timer/counter. Creating a simple stopwatch program using timer-based interrupts.	Control Instructions and Subroutines: Control flow instructions for branching and looping. Subroutine instructions for modular programming.	On-campus study	Quizzes
Week 11	5	Serial Communication Sending and receiving data between two microprocessors using a serial communication protocol. Implementing a basic serial data transmission program.	Input/Output Instructions and Interrupts: Instructions for input and output operations. Handling communication between microprocessors and external devices. Interrupt-driven programming.	On-campus study	Reports
Week 12	5	Parallel Communication Interfacing with a parallel LCD display and sending text messages. Implementing parallel data transfer between two microprocessors.	Stack Operations and Assembly Language Programming (Part 3): Stack operations and their utilization in programming.	On-campus study	Assignments

			Advanced assembly		
			language programming		
			techniques.		
		Project Work - Microprocessor	System Design and		
		System Design	Integration:		
		Designing and assembling a	Integrating		
Week		microprocessor-based traffic light	microprocessors into larger	On-campus	
13	5	simulation system.	systems.	_	Quizzes
13		Creating a simple temperature	System-level	study	
		monitoring system using a	considerations and design		
		temperature sensor and output	principles.		
		device.			
		Project Work - Assembly Language	Review and Project Work:		
		Programming	Review of key concepts and		
Week	5	Implementing a basic game or quiz	programming techniques.	On-campus	Reports
14	3	program using assembly language.	Project work to apply	study	Reports
		Developing a simple data logging	learned concepts.	_	
		system with storage capabilities.			
		Project Presentation and	Project Work and		
		Assessment	Assessment:		
		Presenting the final project work	Finalize and present project		
Week	5	and demonstrating its functionality.	work.	On-campus	Assismments
15	5	Conducting a comprehensive	Summative assessment,	study	Assignments
		assessment of the project	such as exams or project		
		implementation and student	evaluation.		
		understanding.			

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

K. Ayala, "The 8086 Microprocessor: Programming and Interfacing the PC," Boston, MA: Cengage Learning, 2010.

S. Mathur, "Microprocessor 8086: Architecture, Programming, and Interfacing," New Delhi, India: PHI Learning Private Limited, 2011.

Course Description Form

1. Course Name:

Numerical Analysis

2. Course Code:

EET3106

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

75 H / 3 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Numerical Analysis module you described are to:

- 1. Develop an understanding of the sources of errors and uncertainties in numerical computations, including round-off and truncation errors, blunders, model errors, and data uncertainties.
- 2. Explore different methods for finding roots of nonlinear equations, starting from graphical approaches to more efficient iterative methods such as the bisection method, false position method, and Newton-Raphson method.
- 3. Extend the Newton-Raphson method to handle equations with multiple roots using modified techniques.
- 4. Apply root-finding methods in practical scenarios related to electrical engineering and calculations involving bubble point and dew point.
- 5. Study interpolation techniques for approximating functions using polynomial interpolation methods like Newton's and Neville's methods, as well as cubic spline interpolation for constructing smooth curves.
- 6. Understand the concepts of linear and nonlinear regression for fitting data to mathematical models, including linear regressions, multiple linear regressions, and non-linear regressions using parabolic regression or power series approximations.
- 7. Gain knowledge of numerical methods for differentiation and integration, including numerical differentiation techniques such as derivatives estimation and Richardson extrapolation, as well as integration methods like the trapezoid rule, Simpson's rule, and compound numerical integration.
- 8. Acquire skills in solving ordinary differential equations (ODEs) using numerical techniques such as Euler's method, modified Euler's method, linear multistep methods, one-step methods, Runge-Kutta methods, Milne's method, and understanding error estimation and adaptivity in solving ODEs.

Explore the numerical solution of partial differential equations (PDEs) by focusing on boundary value problems (BVPs) associated with second-order elliptic PDEs.

9. Teaching and Learning Strategies

The Numerical Analysis module can employ a variety of learning and teaching strategies to facilitate understanding and application of the subject matter. Some effective strategies include:

- 1. Lectures: Instructors can deliver lectures to introduce and explain key concepts, theories, and numerical methods. Lectures can include demonstrations, examples, and visuals to enhance understanding.
- 2. Problem-solving sessions: Organizing dedicated problem-solving sessions where students can work on numerical problems and practice applying different methods and techniques. These sessions can be instructor-led or in small groups, allowing students to actively engage with the material.
- 3. Interactive discussions: Encouraging interactive discussions in class to promote critical thinking and deepen understanding of the numerical concepts. This can involve asking open-ended questions, facilitating student-led discussions, and encouraging peer-to-peer learning.
- 4. Practical implementation: Providing opportunities for students to implement numerical methods through programming exercises or utilizing numerical software tools. Hands-on experience allows students to gain proficiency in implementing algorithms and analyzing the results.

Week	Hours	Required Learning	red Learning Unit or subject name		Evaluation	
		Outcomes		method	method	
Week 1	3	Introduction to Numerical Analysis and Error Analysis Overview of numerical analysis. Sources of errors in numerical computations. Error analysis and propagation.	Introduction to Numerical Analysis and Error Analysis Overview of numerical analysis. Sources of errors in numerical computations. Error analysis and propagation.	On-campus study	Quizzes	
Week 2	3	Roots Finding of Nonlinear Equations (Part 1) Graphical methods for estimating roots. Bisection method: Algorithm, convergence analysis, and error estimation.	Roots Finding of Nonlinear Equations (Part 1) Graphical methods for estimating roots. Bisection method: Algorithm, convergence analysis, and error estimation.	On-campus study	Reports	
Week 3	3	Roots Finding of Nonlinear Equations (Part 2) False position method: Algorithm, convergence analysis, and error estimation. Newton-Raphson method: Algorithm, convergence analysis, and error estimation.	Roots Finding of Nonlinear Equations (Part 2) False position method: Algorithm, convergence analysis, and error estimation. Newton-Raphson method: Algorithm, convergence analysis, and error estimation.	On-campus study	Assignments	
Week 4	3	Roots Finding of Nonlinear Equations (Part 3) Modified Newton-Raphson method for multiple roots. Applications in electrical engineering and thermodynamics. Roots Finding of Nonlinear Equations (Part 3) Modified Newton-Raphson method for multiple roots. Applications in electrical engineering and thermodynamics.		On-campus study	Quizzes	
Week 5	3	Interpolation and Curve Fitting (Part 1) Polynomial interpolation:	Interpolation and Curve Fitting (Part 1) Polynomial interpolation:	On-campus study	Reports	

		Newton's method, divided differences, and interpolation error. Neville's method for polynomial interpolation.	Newton's method, divided differences, and interpolation error. Neville's method for polynomial interpolation.		
Week 6	3	Interpolation and Curve Fitting (Part 2) Cubic spline interpolation: Construction of splines, boundary conditions, and continuity requirements. Interpolation error analysis and selection of appropriate methods.	Interpolation and Curve Fitting (Part 2) Cubic spline interpolation: Construction of splines, boundary conditions, and continuity requirements. Interpolation error analysis and selection of appropriate methods.	On-campus study	Assignments
Week 7	3	Linear and Non-linear Regression Introduction to regression analysis. Linear regression: Fitting a straight line using least squares approximation.	Linear and Non-linear Regression Introduction to regression analysis. Linear regression: Fitting a straight line using least squares approximation.	On-campus study	Quizzes
Week 8	3	Linear and Non-linear Regression (Continued) Multiple linear regression: Modeling relationships between multiple variables. Non-linear regression: Fitting non-linear models using iterative optimization methods.	Linear and Non-linear Regression (Continued) Multiple linear regression: Modeling relationships between multiple variables. Non-linear regression: Fitting non-linear models using iterative optimization methods.	On-campus study	Reports
Week 9	3	Numerical Differentiation Numerical estimation of derivatives using difference formulas. Richardson extrapolation for improving accuracy. Newton forward formula and Sterling formula for derivative estimation.	Numerical Differentiation Numerical estimation of derivatives using difference formulas. Richardson extrapolation for improving accuracy. Newton forward formula and Sterling formula for derivative estimation.	On-campus study	Assignments
Week 10	3	Numerical Integration (Part 1) Trapezoid rule: Algorithm, error estimation, and composite trapezoidal rule.	Numerical Integration (Part 1) Trapezoid rule: Algorithm, error estimation, and composite trapezoidal rule.	On-campus study	Quizzes
Week 11	3	Numerical Integration (Part 2) Simpson's rule: Algorithm, error estimation, and composite Simpson's rule. Compound numerical integration: Integration over multiple subintervals.	Numerical Integration (Part 2) Simpson's rule: Algorithm, error estimation, and composite Simpson's rule. Compound numerical integration: Integration over multiple subintervals.	On-campus study	Reports
Week 12	3	Numerical Solution of Ordinary Differential Equations (ODEs) (Part 1) Initial value problem (IVP) and	Numerical Solution of Ordinary Differential Equations (ODEs) (Part 1) Initial value problem (IVP) and	On-campus study	Assignments

		Euler's method.	Euler's method.		
		Modified Euler's method: Modified Euler's method:			
		Improved accuracy over Euler's	Improved accuracy over Euler's		
		method.	method.		
	3	Numerical Solution of Ordinary	Numerical Solution of Ordinary		Quizzes
		Differential Equations (ODEs)	Differential Equations (ODEs)		
		(Part 2)	(Part 2)		
Week		Linear multistep methods:	Linear multistep methods:	On-campus	
13		Adams-Bashforth and Adams-	Adams-Bashforth and Adams-	study	
		Moulton methods.	Moulton methods.		
		One-step methods: Runge-	One-step methods: Runge-Kutta		
		Kutta methods (e.g., RK4).	methods (e.g., RK4).		
	3	Numerical Solution of Ordinary	Numerical Solution of Ordinary		
		Differential Equations (ODEs)	Differential Equations (ODEs)		
		(Part 3)	(Part 3)		
Week		Error estimation and adaptivity	Error estimation and adaptivity	On-campus	Reports
14		in numerical ODE solutions.	in numerical ODE solutions.	study	Reports
		Stiffness in ODEs and	Stiffness in ODEs and Stiffness in ODEs and		
		techniques for handling stiff	techniques for handling stiff		
		problems.	problems.		
		Numerical Solution of Partial	Numerical Solution of Partial		
	3	Differential Equations (PDEs)	Differential Equations (PDEs)		
		Introduction to PDEs and	Introduction to PDEs and		
		boundary value problems	boundary value problems		
Week		(BVPs).	(BVPs).	On-campus	Assignments
15		Discretization techniques:	Discretization techniques:	study	Assignments
		Finite difference methods.	Finite difference methods.		
		Solution of resulting linear	Solution of resulting linear		
		algebraic equations: Direct and	algebraic equations: Direct and		
		iterative methods.	iterative methods.		

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.				
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	2 hours	20% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

S. C. Chapra and R. P. Canale, "Numerical Methods for Engineers," 8th ed., McGraw-Hill Education, 2015. [ISBN: 978-0073401065]

R. L. Burden and J. D. Faires, "Numerical Analysis," 10th ed., Cengage Learning, 2015. [ISBN: 978-1305253667]

1. Course Name:

Advanced Power Engineering

2. Course Code:

EET3201

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

175 H / 7 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Advanced Power Engineering module aims to achieve the following objectives:

- 1. To understand the principles and applications of underground cables, students will delve into topics such as cable design, installation procedures, and operational considerations.
- 2. To simplify complex power system calculations and analysis, the module will introduce students to the per unit method, allowing them to normalize quantities and facilitate comparisons among system components.
- 3. To gain proficiency in interpreting single line diagrams, students will learn to identify symbols and connections, enabling them to comprehend the layout and structure of electrical power systems.
- 4. To analyze the electrical characteristics of power system components, students will study impedance and reactance diagrams, which offer valuable insights for power flow analysis, fault calculations, and system stability assessment.
- 5. To tackle unbalanced conditions in power systems, the module will explore symmetrical components, breaking down unbalanced quantities into positive, negative, and zero sequence components, facilitating fault analysis, protection coordination, and power quality evaluation.
- 6. To comprehend the reactance values associated with positive, negative, and zero sequence components, students will explore positive, negative, and zero sequence reactance diagrams, enhancing their ability to analyze faults, design protection systems, and plan power systems.
- 7. To explore advanced power transmission technologies, students will delve into HVDC transmission systems, understanding the principles of AC-DC conversion, long-distance transmission, and AC-DC reconversion, while considering the advantages, challenges, and applications of HVDC in modern power networks.

9. Teaching and Learning Strategies

The The advanced power engineering module can employ various learning and teaching strategies to effectively deliver the content and achieve the desired learning outcome:

Lectures: Traditional lectures can be used to deliver theoretical concepts, principles, and foundational knowledge related to underground cables, per unit method, single line diagrams, impedance and reactance diagrams, symmetrical components, positive, negative, and zero sequence reactance diagrams, and HVDC transmission systems. Lectures can provide a structured overview of the topics and serve as a starting point for further exploration.

Practical Demonstrations: Hands-on practical demonstrations can enhance understanding and application of the concepts. Students can be exposed to real-world examples of underground cable installation, testing procedures, per unit calculations, system analysis using single line diagrams, and HVDC system operation. This allows students to observe the practical aspects of power engineering and bridge the gap between theory and practice.

Case Studies: Case studies involving power system scenarios and problems can be utilized to promote critical thinking and problem-solving skills. Students can analyze and evaluate different power system configurations, fault scenarios, or HVDC transmission system design choices. Case studies encourage students to apply their knowledge and skills to real-world situations and develop effective solutions.

Laboratory Work: Laboratory experiments or simulations can be employed to reinforce theoretical concepts and allow students to gain practical experience. For example, students can conduct experiments related to cable insulation testing, per unit calculations using software tools, or simulating fault scenarios and analyzing the response using power system simulation software. Laboratory work provides a hands-on experience and enhances students' technical skills.

Assignments and Projects: Assignments and projects can be given to students to apply their knowledge and skills independently. These can include tasks such as analyzing a given power system using single line diagrams, performing fault calculations using impedance and reactance diagrams, designing protection systems based on symmetrical components, or conducting a feasibility study for an HVDC transmission project. Assignments and projects encourage independent thinking, research, and the application of concepts to solve specific problems.

Assessment Methods: Assessment methods can include written exams, laboratory reports, case study analyses, group projects, and presentations. These assessments allow students to demonstrate their understanding, analytical skills, and ability to apply knowledge in practical scenarios. Varied assessment methods provide a comprehensive evaluation of students' learning and ensure a well-rounded assessment approach.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	7	Introduction to the lab equipment and safety procedures. Familiarization with power system simulation software.	Introduction to the module and course overview. Overview of power engineering principles and concepts.	On-campus study	Quizzes
Week 2	7	Underground Cable Testing: Measurement of cable insulation resistance and capacitance. Analysis of cable test results.	Underground Cables: Construction, types, and characteristics. Cable insulation materials and properties.	On-campus study	Reports
Week 3	7	Per Unit Calculations: Calculation of per unit values for various power system components. Application of per unit method in power flow analysis.	Cable ampacity calculations and thermal considerations. Cable installation procedures and best practices.	On-campus study	Assignments
Week	7	Single Line Diagram Analysis:	Per Unit Method: Introduction	On-campus	Quizzes

4		Interpretation and analysis of	and concept of base values.	ctudy	
4		single line diagrams.	Conversion of system quantities	study	
		Power system layout and	to per unit values.		
		component identification.	to por unit variation.		
		Impedance and Reactance	Per Unit Method: Calculation		
		Calculations: Calculation and	and application in power		
		analysis of impedance and	system analysis.		
Week	7	reactance values for power	Comparison and analysis of	On-campus	Reports
5	,	system components.	different system components	study	reports
		Power flow analysis using	using per unit values.		
		impedance and reactance			
		diagrams. Fault Analysis Using Impedance	Single Line Diagrams: Purpose,		
		and Reactance Diagrams:	symbols, and representations.		
,		Calculation and analysis of fault	Interpretation of single line		
Week	7	currents and voltages using	diagrams for power system	On-campus	Assignments
6		impedance and reactance	layout and analysis.	study	_
		diagrams.			
		Fault location estimation.	1 1 1 2 2		
		Symmetrical Components Analysis: Calculation and	Impedance and Reactance		
		Analysis: Calculation and analysis of positive, negative,	Diagrams: Introduction and concept.		
Week	7	and zero sequence	Calculation and interpretation	On-campus	Quizzes
7	,	components.	of impedance and reactance	study	Quizzes
		Fault analysis using	values.		
		symmetrical components.			
		Protection Coordination Using	Impedance and Reactance		
		Symmetrical Components:	Diagrams: Power flow analysis		
Week	7	Design and coordination of	using impedance and reactance	On-campus	D (
8	/	protective devices based on symmetrical components.	diagrams. Fault analysis and calculation	study	Reports
		Analysis of protection system	using impedance and reactance		
		performance during faults.	diagrams.		
		Sequence Reactance	Symmetrical Components:		
		Calculations: Calculation and	Theory and principles.		
		interpretation of positive,	Calculation and analysis of		
Week	_	negative, and zero sequence	positive, negative, and zero	On-campus	
9	7	reactance values for power	sequence components.	study	Assignments
		system components. Application of sequence			
		reactance diagrams in fault			
		analysis.			
		HVDC System Simulation:	Symmetrical Components:		
		Simulation of HVDC	Application in fault analysis and		
Week	_	transmission system using	protection coordination.	On-campus	
10	7	power system software.	Power quality assessment using	study	Quizzes
		Analysis of HVDC system	symmetrical components.		
		performance and control parameters.			
		HVDC Converter Station	Positive, Negative, and Zero		
		Operation: Familiarization with	Sequence Reactance Diagrams:		
Week	7	HVDC converter station	Concept and purpose.	On-campus	Reports
11	•		Calculation and interpretation	study	*
		equipment and control	of reactance values for different		

		Analysis of converter station operation under different scenarios.	sequence components.		
Week 12	7	HVDC Transmission Line Design: Design considerations and calculations for HVDC transmission lines. Analysis of line losses and voltage regulation in HVDC systems.	Positive, Negative, and Zero Sequence Reactance Diagrams: Application in fault analysis and protection design. System planning considerations using sequence reactance diagrams.	On-campus study	Assignments
Week 13	7	Lab Report Preparation: Guidance and assistance in preparing lab reports for previous experiments and simulations.	HVDC Transmission Systems: Principles, advantages, and challenges. HVDC converter stations and equipment.	On-campus study	Quizzes
Week 14	7	Lab Report Presentation: Students present their lab reports and findings from the previous experiments. Q&A and discussion on the lab reports.	HVDC Transmission Systems: Transmission line design and operation. Control and protection of HVDC systems.	On-campus study	Reports
Week 15	7	Review and Recap: Review of key concepts and topics covered throughout the lab sessions. Discussion of advanced power engineering topics and emerging trends.	Review and revision of key concepts. Discussion of advanced topics and emerging trends in power engineering.	On-campus study	Assignments

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment		100% (100 Marks)		

12. Learning and Teaching Resources

von Meier, "Electric Power Systems: A Conceptual Introduction." Boca Raton, FL: CRC Press, 2006. J. D. Glover, T. J. Overbye, and M. S. Sarma, "Power System Analysis and Design." Boston, MA: Cengage Learning, 2017.

M. Abdel-Salam, "High Voltage Engineering: Fundamentals and Applications." Boca Raton, FL: CRC Press, 2013.

1. Course Name:

AC Power Conversions

2. Course Code:

EET3202

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

150 H / 6 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

To provide a more concise statement, the AC Power Converter module aims:

- 1. To provide a comprehensive understanding of AC and DC power systems, including their differences, advantages, disadvantages, and applications.
- 2. To teach various DC to AC conversion techniques, such as voltage source inverters and current source inverters, covering their principles, control strategies, and applications.
- 3. To familiarize students with AC and DC static switches, including their operation, types, and applications in power conversion.
- 4. To develop proficiency in resonant pulse inverters, including series resonant inverters, parallel resonant inverters, class E resonant inverters, and their principles of operation and control techniques.
- 5. To provide knowledge of Uninterruptible Power Supply (UPS) systems, including their principles, types, and applications in ensuring power continuity during outages or disturbances.
- 6. To cultivate practical skills for applying knowledge to real-world scenarios, including designing, analyzing, and controlling AC power converter systems based on given specifications.
- 7. To enhance critical thinking and problem-solving skills through the analysis and resolution of complex power conversion problems.

9. Teaching and Learning Strategies

The AC Power Converter module can be delivered using a variety of learning and teaching strategies to enhance students' understanding and engagement. Here are some effective strategies that adopted:

- 1. Lectures: Traditional lectures can be used to introduce key concepts, theories, and principles related to AC power conversion. Lectures can provide a structured presentation of the content and allow for explanations, demonstrations, and examples.
- 2. Practical Laboratory Sessions: Practical laboratory sessions provide hands-on experience with AC power converter systems. Students can work with real-world equipment, simulation tools, and measurement instruments to design, build, test, and troubleshoot power converters. This approach helps

reinforce theoretical concepts and develop practical skills.

- 3. Case Studies: Case studies allow students to apply their knowledge to real-world scenarios and analyze practical examples of AC power conversion systems. They can explore the challenges, design considerations, and solutions employed in various applications, such as renewable energy systems or industrial power systems.
- 4. Group Discussions and Problem-Solving Exercises: Group discussions and problem-solving exercises promote active learning and collaboration. Students can work together to analyze and solve complex problems related to AC power conversion. This approach encourages critical thinking, knowledge sharing, and the exploration of multiple perspectives.
- 5. Simulations and Modeling: Computer simulations and modeling tools can be used to supplement theoretical concepts and enable students to explore different AC power converter topologies, control strategies, and performance characteristics. Students can simulate and analyze the behavior of power converters under various operating conditions.
- 6. Guest Speakers and Industry Visits: Inviting guest speakers from industry or arranging visits to power converter manufacturing facilities or power system installations can provide students with real-world insights and practical applications of AC power conversion. It also helps students understand the industry trends, challenges, and career opportunities.
- 7. Online Resources and Learning Platforms: Utilizing online resources, such as educational websites, interactive simulations, and multimedia presentations, can enhance students' self-paced learning and provide additional learning materials beyond the classroom. Online discussion forums and collaboration platforms can facilitate communication and knowledge sharing among students.
- 8. Assessments and Feedback: Regular assessments, including quizzes, assignments, and exams, enable students to gauge their understanding of the subject matter and receive feedback on their progress. Constructive feedback from instructors helps students identify areas for improvement and reinforce their learning.

Research Projects: Encouraging students to undertake research projects related to AC power conversion fosters independent thinking, problem-solving skills, and deeper exploration of specific topics. Research projects can involve literature reviews, experimentation, simulation, and the development of innovative solutions.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning	Evaluation
				method	method
Week 1	6	Lab Introduction and Safety Briefing: Familiarization with laboratory equipment and software tools.	Introduction to AC Power Conversion. Overview of AC and DC power systems. Basic principles of power electronics.	On-campus study	Quizzes
Week 2	6	Introduction to Voltage Source Inverters (VSI): Building and testing a single-phase VSI circuit. Measurement of output voltage and current waveforms. Control strategies and waveform analysis. Introduction to Voltage Source Inverters (VSI): Building and testing a single-phase VSI circuit.	DC to AC Conversion Techniques: Voltage source inverters (VSI). Principles of operation and control strategies for VSI.	On-campus study	Reports

		Measurement of output voltage and current waveforms. Control strategies and waveform analysis.			
Week 3	6	Introduction to Current Source Inverters (CSI): Building and testing a single-phase CSI circuit. Measurement of output voltage and current waveforms. Control strategies and waveform analysis.	DC to AC Conversion Techniques: Current source inverters (CSI). Principles of operation and control strategies for CSI.	On-campus study	Assignments
Week 4	6	AC Static Switches: Testing and characterization of AC static switches (thyristors, triacs). Understanding their switching characteristics and triggering methods.	AC and DC Static Switches. Thyristors, triacs, MOSFETs, IGBTs, and their characteristics. Applications of static switches in power systems.	On-campus study	Quizzes
Week 5	6	DC Static Switches: Testing and characterization of DC static switches (MOSFETs, IGBTs). Understanding their switching characteristics and control techniques.	Resonant Pulse Inverters: Series resonant inverters. Operation, control, and design considerations for series resonant inverters.	On-campus study	Reports
Week 6	6	Series Resonant Inverters: Building and testing a series resonant inverter circuit. Analysis of resonant frequency, voltage, and current waveforms. Control techniques and efficiency measurement.	Resonant Pulse Inverters: Parallel resonant inverters. Operation, control, and design considerations for parallel resonant inverters.	On-campus study	Assignments
Week 7	6	Parallel Resonant Inverters: Building and testing a parallel resonant inverter circuit. Analysis of resonant frequency, voltage, and current waveforms. Control techniques and efficiency measurement.	Resonant Pulse Inverters: Class E resonant inverters. Principles, advantages, and applications of class E resonant inverters.	On-campus study	Quizzes
Week 8	6	Class E Resonant Inverters: Building and testing a class E resonant inverter circuit. Analysis of waveforms and efficiency measurement. Comparison with conventional inverters.	Resonant Pulse Inverters: Zero-current-switching and zero-voltage- switching resonant converters. Operation, control, and design considerations for these converters.	On-campus study	Reports
Week 9	6	Zero-Current-Switching and Zero-Voltage-Switching Resonant Converters: Building and testing zero-current-switching and zero-voltage-switching resonant converter	Resonant Pulse Inverters: Two-quadrant ZVS resonant converters. Principles, operation, and control strategies for two- quadrant ZVS converters.	On-campus study	Assignments

	1	T	Ι	1	T
		circuits. Analysis of waveforms and efficiency measurement. Comparison with conventional inverters.			
Week 10	6	Two-Quadrant ZVS Resonant Converters: Building and testing a two-quadrant ZVS resonant converter circuit. Analysis of waveforms, control strategies, and efficiency measurement.	Resonant Pulse Inverters: Resonant DC-link inverters. Principles, operation, and control strategies for resonant DC-link inverters.	On-campus study	Quizzes
Week 11	6	Uninterruptible Power Supply (UPS) Systems: Testing and analysis of UPS systems under different load conditions. Backup time calculation and performance evaluation.	Uninterruptible Power Supply (UPS) Systems. Types of UPS systems, principles of operation, and backup strategies.	On-campus study	Reports
Week 12	6	Simulation and Modeling of AC Power Converters: Using simulation tools to model and simulate AC power converters. Analysis of converter performance and control strategies.	Design and Analysis of AC Power Converters. Converter topologies, control techniques, and design considerations.	On-campus study	Assignments
Week 13	6	Design and Analysis of AC Power Converter Systems: Designing and optimizing AC power converter systems based on given specifications. Simulation, prototyping, and testing of the designed systems.	Practical Applications and Case Studies. Applications of AC power converters in renewable energy systems, motor drives, and power factor correction.	On-campus study	Quizzes
Week 14	6	Advanced Topics in AC Power Conversion: Exploring advanced topics such as power factor correction, multilevel converters, or grid-connected systems. Simulation, analysis, and performance evaluation.	Emerging Trends and Future Developments in AC Power Conversion. Latest advancements in power electronics and integration with smart grids and energy storage systems.	On-campus study	Reports
Week 15	6	Project Work and Presentation: Undertaking a mini project related to AC power conversion. Design, simulation, implementation, and presentation of the project.	Review and Exam Preparation. Recap of key concepts, problem-solving exercises, and exam preparation.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All

	Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
	assessment	Final Exam	3 hours	50% (50)	16	All
ĺ	Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

N. Mohan, T. M. Undeland, and W. P. Robbins, "Power Electronics: Converters, Applications, and Design," 3rd ed. Hoboken, NJ: John Wiley & Sons, 2002.

M. H. Rashid, "Power Electronics: Circuits, Devices, and Applications," 4th ed. Boston, MA: Pearson, 2013.

Course Description Form

1. Course Name:

Synchronous and Special Machines

2. Course Code:

EET3203

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Synchronous and Special Machines module include:

- 1. To understand the construction, theory of operation, and characteristics of synchronous machines and special machines.
- 2. To comprehend the principles and methods of voltage regulation in synchronous machines.
- 3. To learn about the parallel operation of alternators and its significance in power generation systems.
- 4. To explore the applications, operating characteristics, and effects of changing field excitation at a constant load in synchronous motors.
- 5. To understand the power relations and power-flow equations in synchronous machines.
- 6. To analyze V curves for synchronous motors and their role in maintaining voltage stability.
- 7. To study linear synchronous machines and their applications in high-speed transportation systems.
- 8. To introduce and examine various types of special machines, including stepper motors, permanent magnet motors, servomotors, reluctance motors, switched reluctance motors, brushless DC motors, hysteresis motors, and linear induction motors.

9. To develop a comprehensive understanding of synchronous and special machines, enabling their effective utilization in industrial and technological fields.

9. Teaching and Learning Strategies

The Synchronous and Special Machines module can be effectively taught and learned through a combination of various strategies. Here are some suggested learning and teaching strategies for this module:

- 1. Lectures: Conduct interactive lectures to introduce the theoretical concepts, principles, and operating characteristics of synchronous and special machines. Use visual aids, illustrations, and examples to enhance understanding.
- 2. Practical Demonstrations: Organize hands-on demonstrations or laboratory sessions where students can observe and interact with actual synchronous machines and special machines. This provides practical exposure and reinforces theoretical concepts.
- 3. Case Studies: Present real-life case studies and examples to illustrate the application of synchronous and special machines in different industries. Analyze the challenges faced and the solutions implemented, encouraging critical thinking and problem-solving skills.
- 4. Group Discussions: Facilitate group discussions and brainstorming sessions to encourage students to actively participate and share their perspectives on various topics related to synchronous and special machines. This promotes collaboration and a deeper understanding of the subject matter.
- 5. Simulations and Virtual Labs: Utilize computer-based simulations and virtual laboratory environments to simulate the operation of synchronous machines and allow students to experiment with different parameters. This provides a safe and interactive learning experience.
- 6. Research Projects: Assign research projects to students on specific topics related to synchronous and special machines. This encourages independent learning, research skills development, and the exploration of advanced concepts and emerging technologies.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to Lab Equipment and Safety Lab equipment overview and safety guidelines. Introduction to the synchronous and special machines used in the lab.	Introduction to Synchronous Machines Basic principles and applications. Overview of synchronous machines in power systems and industries.	On-campus study	Quizzes
Week 2	5	Synchronous Machine Construction Disassembly and assembly of a synchronous machine. Identification of components and their functions.	Construction of Synchronous Machines Stator and rotor construction. Winding configurations and types.	On-campus study	Reports
Week 3	5	Voltage Regulation in Synchronous Machines Practical demonstration of different methods of voltage regulation. Measurement and analysis of voltage regulation characteristics.	Theory of Synchronous Machines Electromagnetic induction and magnetic fields. Generation of EMF and torque.	On-campus study	Assignments

Week 4	5	Alternator Operation and Parallel Operation Hands-on experimentation with alternators and synchronization techniques. Parallel operation of alternators and load sharing control.	Alternators Operating principles and characteristics. Types of alternators. Excitation systems and voltage regulation.	On-campus study	Quizzes
Week 5	5	Synchronous Motor Characteristics Performance testing of synchronous motors. Measurement and analysis of torque-speed characteristics.	Methods of Voltage Regulation Synchronous impedance method. EMF or Potier method.	On-campus study	Reports
Week 6	5	Field Excitation Effects on Synchronous Motors Investigation of the impact of changing field excitation on motor performance. Measurement and analysis of torque, power factor, and efficiency.	Parallel Operation of Alternators Synchronization and paralleling of alternators. Load sharing and control mechanisms.	On-campus study	Assignments
Week 7	5	Power Relations in Synchronous Machines Measurement and analysis of active power, reactive power, and power factor. Study of power-angle characteristics.	Synchronous Motors Operating principles and characteristics. Field excitation methods.	On-campus study	Quizzes
Week 8	5	V Curves for Synchronous Motors Experimental determination of V curves for synchronous motors. Analysis of the relationship between field excitation and terminal voltage.	Effect of Changing Field Excitation at Constant Load Impact on motor performance. Field weakening and strengthening techniques.	On-campus study	Reports
Week 9	5	Linear Synchronous Machines Study of linear synchronous machines and their applications. Practical demonstration of their operation and characteristics.	Power Relations in Synchronous Machines Active power, reactive power, and power factor. Power-angle characteristics and equations.	On-campus study	Assignments
Week 10	5	Stepper Motor Control Hands-on experience with stepper motor control techniques. Programming and implementation of different stepping modes.	V Curves for Synchronous Motors Characteristics and interpretation of V curves. Determination of field excitation for voltage regulation.	On-campus study	Quizzes
Week 11	5	Permanent Magnet Motors Testing and analysis of	Linear Synchronous Machines Principles and applications in	On-campus	Reports

		permanent magnet DC motors and synchronous motors.	high-speed transportation systems.	study	
		Measurement of their	Construction and operation of		
		performance parameters. Servomotor Control	linear synchronous motors. Stepper Motors		
Week 12	5	Practical exercises involving control of DC and AC servomotors. Implementation of position and speed control algorithms.	Types, operation, and control strategies.	On-campus study	Assignments
Week 13	5	Other Special Machines Exploration and experimentation with reluctance motors, switched reluctance. motors, brushless DC motors, hysteresis motors, and linear induction motors.	Permanent Magnet Motors DC motors and synchronous motors utilizing permanent magnets.	On-campus study	Quizzes
Week 14	5	Lab Review and Project Work Review of key concepts and lab experiments. Project work related to synchronous and special machines.	Servomotors DC servomotors and AC servomotors.	On-campus study	Reports
Week 15	5	Lab Exams and Project Presentations Individual or group lab exams assessing practical skills and knowledge. Project presentations and discussions.	Other Special Machines Reluctance motors switched reluctance motors, brushless DC motors, hysteresis motors, and linear induction motors.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

S. J. Chapman, "Electric Machinery Fundamentals." McGraw-Hill, 2004. Boldea and S. A. Nasar, "Synchronous Generators." CRC Press, 2018.

S. K. Srinivasan, "Special Electrical Machines." McGraw-Hill Education, 2017.

1. Course Name:

Digital Controllers

2. Course Code:

EET3204

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

175 H / 7 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Digital Controllers module aims to achieve the following objectives:

- 1. To provide an introduction to the concept of single-chip microcomputers (microcontrollers) and their applications in various industries.
- 2. To familiarize students with different types of microcontrollers, their features, and their suitability for different applications.
- 3. To explain the architecture of microcontrollers, including the block diagram, pin functions, and memory organization.
- 4. To introduce students to program development tools such as Integrated Development Environments (IDEs), assemblers, compilers, linkers, simulators, and debuggers.
- 5. To cover the concept of sensor interfacing with microcontrollers, types of sensors, and their applications.
- 6. To explain analog-to-digital (A/D) and digital-to-analog (D/A) conversion techniques used in microcontroller interfacing.
- 7. To provide an understanding of input/output (I/O) instructions and their usage in microcontroller programming.
- 8. To introduce students to programmable logic controllers (PLCs), including their history, operation principles, and advantages.
- 9. To explain ladder diagrams, a commonly used programming language for PLCs.
- 10. To familiarize students with the processors used in PLCs, the process scan cycle, and system power supply requirements.
- 11. To cover memory systems, including their organization, configuration, and interaction with input/output devices in PLCs.
- 12. To discuss discrete and analog input/output systems, including I/O racks, instructions, data representation, and handling.
- 13. To introduce special function I/O interfaces, such as analog, temperature, PID control, and

positioning interfacing.

- 14. To cover different programming languages used in PLCs and focus on ladder relay programming.
- 15. To explore various programming concepts and instructions used in PLCs, including timers, counters, arithmetic operations, data manipulations, and flow control.
- 16. To provide guidance on system programming and implementation, including control strategies, I/O control programming, and implementation guidelines.

To illustrate real-world industrial applications of PLCs, such as drilling machines, package sorting, injection molding, bottle filling, X-Y dispensers, and more.

9. Teaching and Learning Strategies

The Digital Controllers module can employ various learning and teaching strategies to facilitate student understanding and engagement. Here are some effective strategies:

- 1. Lectures: Instructor-led lectures can provide a structured presentation of the module's content, covering theoretical concepts, principles, and key information. Visual aids, such as slides or demonstrations, can enhance understanding.
- 2. Interactive Discussions: Engage students in interactive discussions to promote critical thinking and application of concepts. Encourage students to ask questions, share their perspectives, and participate in group discussions to deepen their understanding.
- 3. Hands-on Practical Sessions: Provide hands-on practical sessions where students can work with microcontrollers and PLCs, programming software, and interfacing components. This experiential learning approach enhances understanding and helps students apply theoretical knowledge in practical scenarios.
- 4. Case Studies: Present real-world case studies that showcase the practical applications of microcontrollers and PLCs in industrial settings. Analyzing and discussing these case studies can help students connect theory to practice and understand the challenges and solutions in real-life scenarios.
- 5. Group Projects: Assign group projects where students work together to design and implement microcontroller or PLC-based systems for specific applications. This encourages teamwork, problem-solving, and application of knowledge in a practical context.
- 6. Simulations and Virtual Labs: Utilize simulations and virtual lab environments to provide virtual hands-on experiences. This allows students to practice programming and interfacing without requiring physical hardware, making it accessible and convenient for learning.
- 7. Guest Lectures and Industry Experts: Invite guest lecturers or industry experts to share their experiences and insights related to microcontrollers and PLCs. This can provide real-world perspectives, practical tips, and industry trends to enhance students' understanding and career awareness.

Assessments and Feedback: Use a variety of assessment methods, such as quizzes, assignments, practical projects, and examinations, to evaluate students' understanding and progress. Provide timely feedback to help students identify areas of improvement and reinforce their learning.

Week	Hours	Required Learning Outcomes	Unit or subject	Learning	Evaluation
			name	method	method
Week 1	7	Introduction to Arduino IDE and Basic Programming Setting up Arduino IDE and connecting the Arduino board. Writing and uploading a simple program to blink an LED. Experimenting with different input/output (I/O) pins and basic programming constructs.	Introduction to Single-Chip Microcomputers (Microcontrollers) Overview of microcontrollers and their applications. Types of microcontrollers and their features.	On-campus study	Quizzes
Week	7	Arduino Sensor Interfacing	Microcontroller	On-campus	Reports

2		Interfacing various sensors (e.g., temperature, light, motion) with Arduino. Reading sensor data and displaying it on the serial monitor or LCD. Implementing sensor-based control and feedback systems. Arduino Actuator Interfacing	Architecture Block diagram of microcontrollers. Pin diagram and pin functions. General purpose and special-function registers. Program Development	study	
Week 3	7	Interfacing actuators (e.g., LEDs, motors, relays) with Arduino. Controlling actuators based on sensor inputs or program logic. Building automation tasks and projects using Arduino.	Tools (IDE) Integrated Development Environments (IDEs). Assembler, compiler, linker, simulator, and debugger.	On-campus study	Assignments
Week 4	7	Advanced Arduino Programming Techniques Utilizing libraries and functions for advanced Arduino programming. Implementing communication protocols (e.g., I2C, SPI) for sensor and actuator integration. Creating custom functions and modularizing Arduino code.	Microcontroller Interfacing Sensors and their interfacing with microcontrollers. Analog-to-digital (A/D) and digital-to-analog (D/A) conversion.	On-campus study	Quizzes
Week 5	7	Introduction to PLC and Basic Programming Understanding the fundamentals of PLCs and their applications. Introduction to ladder logic programming language. Creating and simulating ladder logic programs for basic control tasks.	Input/Output (I/O) Instructions I/O instructions and their usage in microcontroller programming.	On-campus study	Reports
Week 6	7	PLC Input/Output Interfacing Interfacing digital and analog inputs/outputs with the PLC. Configuring I/O modules and addressing inputs/outputs. Testing and verifying the PLC I/O operation.	Introduction to Programmable Logic Controllers (PLCs) Definition and history of PLCs. Operation principles of PLCs.	On-campus study	Assignments
Week 7	7	PLC Programming - Sequential Control Implementing sequential control using ladder logic programming. Designing and programming simple sequential tasks and state machines. Simulating and testing the PLC program for sequential control.	Processors and Power Supply of PLCs Processors used in PLCs. Process scan cycle. System power supply requirements.	On-campus study	Quizzes
Week 8	7	PLC Programming - Timer and Counter Applications Understanding timer and counter instructions in ladder logic programming. Creating timer-based control and delay operations.	Memory Systems and I/O Interaction in PLCs Memory overview, structure, and organization in PLCs. Configuration of memory systems.	On-campus study	Reports

		Implementing counting operations for	Interaction with		
		various applications.	input/output devices.		
Week 9	7	PLC Programming - Data Manipulation and Arithmetic Operations Utilizing data manipulation instructions (e.g., move, compare, convert) in PLC programming. Performing arithmetic operations and mathematical calculations in ladder logic. Applying data manipulation and arithmetic operations in control tasks.	Discrete and Analog Input/Output Systems in PLCs I/O racks and modules in PLCs. Discrete I/O types and instructions. Analog I/O instructions.	On-campus study	Assignments
Week 10	7	PLC Programming - Analog Control Interfacing and controlling analog devices (e.g., sensors, actuators) with the PLC. Configuring and calibrating analog inputs and outputs. Implementing analog control using ladder logic programming.	Special Function I/O and Interfaces in PLCs Special analog interfaces (e.g., temperature, PID control). Positioning interfacing.	On-campus study	Quizzes
Week 11	7	PLC Networking and Communication Configuring communication protocols (e.g., Modbus, Ethernet/IP) for data exchange. Implementing networked control systems using PLCs. Establishing communication between PLC and external devices (e.g., HMI, SCADA).	PLC Programming Types of PLC programming languages. Ladder diagram format. Ladder relay programming.	On-campus study	Reports
Week 12	7	Advanced PLC Programming Techniques Utilizing advanced instructions (e.g., shift registers, math operations) in ladder logic programming. Implementing complex control algorithms and logic using PLC programming. Developing modular and structured PLC programs.	Programming Techniques and Instructions Timers and counters in PLC programming. Arithmetic and data manipulation instructions. Flow control instructions.	On-campus study	Assignments
Week 13	7	Integration of Arduino and PLC Connecting Arduino and PLC together using appropriate interfaces (e.g., digital inputs/outputs). Integrating Arduino and PLC for combined control and monitoring tasks. Implementing complex control strategies and automation systems using Arduino and PLC in conjunction.	System Programming and Implementation Control strategy development. Implementation guidelines. I/O control programming.	On-campus study	Quizzes
Week 14	7	Industrial Applications and Project Development Undertaking industrial automation projects using Arduino and PLC. Designing and implementing control systems for specific applications (e.g.,	Industrial Applications of PLCs Examples of industrial applications utilizing PLCs.	On-campus study	Reports

		conveyor control, temperature regulation). Testing, troubleshooting, and refining the developed projects.			
Week 15	7	Project Presentations and Review Students present their final projects, demonstrating their understanding and application of digital controllers. Review of key concepts, techniques.	Review and Assessment Recap of key concepts and topics. Final assessment or project presentations.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

- S. H. Zak, "Microcontrollers: Fundamentals and Applications with PIC," Cengage Learning, 2018.
- T. J. Williams, "Programmable Logic Controllers," 6th edition, McGraw-Hill Education, 2017.
- F. P. Beer, E. R. Johnston Jr., and D. F. Mazurek, "Process Dynamics and Control," 4th edition, Wiley, 2018.
- S. B. Niku, "Introduction to Robotics: Analysis, Systems, Applications," Oxford University Press, 2018.
- G. F. Franklin, J. D. Powell, and A. Emami-Naeini, "Digital Control of Dynamic Systems," Pearson, 2014

1. Course Name:

Transmission and Distribution System

2. Course Code:

EET4101

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Transmission and Distribution Module are to provide students or participants with a solid understanding of the following:

- 1. To provide students or participants with a solid understanding of electric power transmission and distribution systems.
- 2. To familiarize students with the overall structure and components of electric power supply systems, including power generation, transmission, and distribution.
- 3. To enable students to compare and evaluate different conductor materials, such as copper and aluminum, based on their electrical properties, cost, availability, and other relevant factors.
- 4. To provide students with the ability to calculate the appropriate size of conductors using Kelvin's law and understand the relationship between conductor size, electrical resistance, and temperature rise.
- 5. To educate students about different grounding techniques and their importance in electrical systems, including system grounding, equipment grounding, and grounding electrode systems.
- 6. To provide students with an understanding of the performance characteristics of transmission lines, including line losses, voltage regulation, and power factor correction.
- 7. To familiarize students with the components and configurations of power distribution systems, such as substations, transformers, distribution lines, and distribution transformers.

9. Teaching and Learning Strategies

The Transmission and Distribution Module can be effectively taught using a combination of various learning and teaching strategies. Here are some strategies that can be employed:

- 1. Lectures: Traditional lectures can be used to deliver foundational knowledge and concepts related to electric power transmission and distribution. Lectures can provide an overview of the subject matter, explain theoretical principles, and highlight key concepts.
- 2. Interactive Discussions: Engaging students in interactive discussions can help deepen their understanding of the topics covered. This can involve group discussions, brainstorming sessions, and

question-and-answer sessions to encourage active participation and critical thinking.

- 3. Case Studies and Real-World Examples: Presenting real-world case studies and examples related to transmission and distribution can help students relate theoretical concepts to practical applications. Analyzing and discussing these cases can enhance problem-solving skills and promote a deeper understanding of the subject matter.
- 4. Hands-on Experiments and Simulations: Conducting hands-on experiments or using simulations can provide students with a practical experience of working with transmission and distribution systems. This can include laboratory experiments, computer simulations, or virtual reality simulations to demonstrate concepts and allow students to apply their knowledge.
- 5. Group Projects and Presentations: Assigning group projects related to transmission and distribution can encourage teamwork, research skills, and critical analysis. Students can work together to design transmission lines, analyze distribution systems, or propose improvements to existing infrastructure. Presentations of project findings can enhance communication and presentation skills.
- 6. Site Visits and Guest Speakers: Organizing site visits to transmission substations, distribution centers, or renewable energy facilities can provide students with firsthand exposure to the actual infrastructure and operations. Inviting guest speakers from industry professionals can also offer insights into real-world challenges and experiences in transmission and distribution.
- 7. Technology Integration: Integrating technology tools and resources can enhance learning experiences. This can include using multimedia presentations, interactive simulations, online resources, and virtual learning platforms to supplement classroom instruction and provide additional learning materials.
- 8. Assessment Methods: Assessments should be designed to evaluate students' understanding and application of the concepts learned. This can include quizzes, exams, project reports, presentations, and practical assessments to gauge their knowledge, problem-solving abilities, and practical skills.
- 9. Continuous Feedback and Support: Regularly providing feedback and support to students can help them track their progress and address any difficulties they may face. This can include one-on-one discussions, office hours, and constructive feedback on assignments and projects.
- 10. Industry Collaboration and Internships: Collaborating with industry partners or offering internships can provide students with valuable hands-on experience in transmission and distribution. This can enhance their understanding of industry practices, build professional networks, and bridge the gap between theoretical knowledge and practical applications.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning	Evaluation
				method	method
Week 1	5	Lab Safety and Introduction to Lab Equipment Introduction to lab safety procedures and protocols. Familiarization with lab equipment and tools used in transmission and distribution experiments.	Introduction to Electric Power Supply Systems Overview of electric power supply systems. Types of power plants and energy sources.	On-campus study	Quizzes
Week 2	5	Conductor Material Comparison Conduct experiments to compare the electrical properties of different conductor materials. Measure conductivity, resistivity, and other relevant parameters.	Conductor Materials and Comparison Properties of conductor materials. Comparison of conductor materials: copper, aluminum, others.	On-campus study	Reports

Week 3	5	Conductor Sizing and Kelvin's Law Perform experiments to understand the relationship between conductor size, electrical resistance, and temperature rise. Use Kelvin's law to calculate the appropriate size of conductors for given scenarios.	Conductor Sizing and Kelvin's Law Calculation of conductor size using Kelvin's law. Current carrying capacity and temperature rise considerations.	On-campus study	Assignments
Week 4	5	Grounding Systems and Techniques Set up experiments to demonstrate different grounding techniques. Measure and compare the effectiveness of system grounding, equipment grounding, and grounding electrode systems.	Grounding Systems and Techniques Purpose and importance of grounding in electrical systems. Types of grounding systems: system grounding, equipment grounding, grounding electrode systems.	On-campus study	Quizzes
Week 5	5	Transmission Line Performance Analysis Conduct experiments to measure line losses, voltage regulation, and power factor correction in transmission lines. Analyze the impact of line parameters on transmission line performance.	Performance of Transmission Lines Transmission line parameters: line losses, impedance, reactance. Voltage regulation and power factor correction.	On-campus study	Reports
Week 6	5	Distribution System Components and Configurations Set up experiments to study the behavior and characteristics of distribution system components such as transformers and distribution lines. Explore different distribution system configurations and their effects on power flow.	Short Transmission Lines	On-campus study	Assignments
Week 7	5	Power Quality Analysis in Distribution Systems Perform experiments to measure and analyze power quality issues in distribution systems. Investigate voltage sags, swells, harmonics, and their impacts.	Medium Transmission Lines Type T. Type Pi.	On-campus study	Quizzes
Week 8	5	Safety Measures in Transmission and Distribution Conduct hands-on activities to reinforce safety practices in transmission and distribution environments. Perform risk assessments, demonstrate proper use of personal protective equipment (PPE), and	Long Transmission Lines	On-campus study	Reports

		simulate emergency scenarios.			
Week 9	5	Renewable Energy Integration in Transmission and Distribution Set up experiments to explore the integration of renewable energy sources in transmission and distribution systems. Analyze the challenges and benefits of incorporating renewable energy.	Distribution Systems and Components Overview of power distribution systems. Substations, transformers, and distribution lines.	On-campus study	Assignments
Week 10	5	Smart Grid Technologies and Grid Modernization Perform experiments related to smart grid technologies such as advanced metering infrastructure (AMI) and demand response. Investigate the impact of grid modernization on transmission and distribution systems.	Distribution System Configurations Radial distribution systems. Loop and network distribution systems.	On-campus study	Quizzes
Week 11	5	Fault Detection and Protection in Transmission Lines Set up experiments to detect and simulate faults in transmission lines. Study protective devices and analyze their performance in fault conditions.	Safety and Regulatory Requirements Safety regulations and codes in transmission and distribution. Occupational safety practices.	On-campus study	Reports
Week 12	5	Distribution Network Planning and Optimization Perform simulations or use software tools to plan and optimize distribution networks. Consider factors such as load balancing, voltage control, and system reliability.	Power Quality in Distribution Systems Power quality issues and considerations. Voltage sags, swells, and harmonics.	On-campus study	Assignments
Week 13	5	Project Work and Presentations Work on group projects related to transmission and distribution. Design and simulate transmission lines, distribution networks, or implement improvements to existing systems. Present project findings and recommendations.	Practical Applications and Case Studies Analysis of transmission line designs. Distribution network planning and optimization.	On-campus study	Quizzes
Week 14	5	Review and Revision Review lab experiments, concepts, and practical applications covered in the module. Address any questions or concerns related to lab work.	Project Work and Presentations Collaborative projects on transmission and distribution systems. Presentation of project findings and recommendations.	On-campus study	Reports
Week 15	5	Lab Assessment and Evaluation Complete a lab assessment or practical examination. Evaluate the effectiveness of the lab	Final Assessment and Evaluation Final examination or assessment.	On-campus study	Assignments

	sessions and provide feedback.	Course evaluation and feedback.	
•			

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

- V. K. Mehta, "Principles of Power Systems" 2nd ed., S. Chand & Company LTD.
- S. Sivanagaraju, "Electric Power Transmission and Distribution," 2nd ed., New Delhi, India: Pearson Education India, 2015.
- A. von Meier, "Electric Power Systems: A Conceptual Introduction," Hoboken, NJ: Wiley, 2018.

Course Description Form

1	Course Name:	
I٠	Course Name:	

Electric Machine Drives

2. Course Code:

EET4102

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of a module that covers the topics you mentioned could include:

To provide a clear structure, coherence, and progression throughout the module, the following aims are defined:

- 1. To familiarize students with the fundamental principles of electric motors and their diverse applications across various industries.
- 2. To explain the working principles, characteristics, and advantages of three-phase motors, emphasizing their significance in industrial settings.
- 3. To introduce the concept of electric power, its measurement, and its relevance in understanding motor performance and efficiency.
- 4. To provide an in-depth understanding of the components comprising motor starters, elucidating their functions and role in controlling motor operation.
- 5. To explore and compare the different starting methods employed in induction motors, highlighting their respective advantages, limitations, and suitable applications.
- 6. To elucidate the operation and benefits of solid-state starters, specifically focusing on soft starters as effective devices for controlled motor starting.
- 7. To introduce the principles and functionalities of variable frequency drives (VFDs), emphasizing their role in precise motor speed control and energy efficiency enhancement.
- 8. To familiarize students with the various parameters associated with VFDs, enabling them to effectively configure and optimize drive performance.
- 9. To emphasize the importance of implementing proper protection measures and adhering to correct installation practices for VFDs to ensure safe and reliable operation.
- 10. To equip students with the knowledge and skills to appropriately size and select VFDs based on motor specifications, load characteristics, and specific application requirements.

11. Teaching and Learning Strategies

To effectively deliver the Electric Motor Drives module and promote student learning, the following learning and teaching strategies can be implemented:

- 1. Lectures: Conduct interactive lectures to introduce fundamental concepts, theories, and principles of electric motor drives. Use visual aids, real-world examples, and case studies to enhance understanding.
- 2. Practical Lab Sessions: Provide hands-on lab sessions where students can work with electric motors, motor drives, and associated control equipment. Allow students to experiment with different drive configurations and control techniques, and encourage them to analyze and interpret the results.
- 3. Simulation Software: Utilize simulation software specifically designed for electric motor drives. This allows students to explore various drive configurations, control strategies, and performance parameters in a virtual environment.
- 4. Problem-Solving Exercises: Assign problem-solving exercises that require students to analyze motor drive systems, design control strategies, and troubleshoot common issues. This helps develop critical thinking skills and practical problem-solving abilities.
- 5. Group Projects: Assign group projects where students collaborate to design and implement motor drive systems for specific applications. Encourage teamwork, communication, and project management skills while integrating theoretical knowledge with practical implementation.
- 6. Case Studies: Present case studies showcasing real-world applications of electric motor drives. Analyze successful implementations, challenges faced, and lessons learned to provide practical insights and industry relevance.
- 7. Guest Speakers: Invite industry experts or practitioners to share their experiences and provide

insights into the field of electric motor drives. This exposes students to current industry practices, emerging technologies, and career opportunities.

- 8. Online Resources and Discussion Forums: Provide access to online resources, such as e-books, articles, and video lectures, to supplement classroom learning. Establish online discussion forums where students can engage in peer-to-peer learning, ask questions, and share resources.
- 9. Assessments: Conduct regular assessments, including quizzes, exams, and project evaluations, to assess students' understanding of the subject matter. Provide timely feedback to help students identify areas for improvement and reinforce learning.
- 10. Continuous Professional Development: Encourage students to stay updated with advancements in electric motor drives by promoting continuous professional development. This can include attending industry conferences, webinars, or workshops, and engaging in self-directed learning.

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning	Evaluation
				method	method
Week 1	5	Lab safety briefing and introduction to lab equipment. Familiarization with basic measurement instruments (multimeters, oscilloscopes).	Introduction to Electric Motors. Principles of Operation for Electric Motors.	On-campus study	Quizzes
Week 2	5	Experiment: Performance Characteristics of DC Motors. Measuring voltage, current, and speed of a DC motor. Plotting torque-speed characteristics.	Types of Electric Motors (DC motors, AC induction motors, synchronous motors). Motor Characteristics: Torque-Speed Relationship, Efficiency.	On-campus study	Reports
Week 3	5	Experiment: Starting Methods of Induction Motors. Demonstrating Direct-on-line (DOL) starting method. Observing the motor response and current waveform.	Three-Phase Motors: Introduction and Advantages. Working Principles of Three-Phase Induction Motors.	On-campus study	Assignments
Week 4	5	Experiment: Three-Phase Motors and Power Measurement. Connecting and operating a three-phase induction motor. Measuring and calculating power consumption.	Three-Phase Motors: Types and Characteristics (squirrel cage, wound rotor). Starting Methods for Three-Phase Motors.	On-campus study	Quizzes
Week 5	5	Experiment: Motor Starter Components Assembling and testing motor starter circuits. Observing the behavior of contactors and overload relays.	Electric Power: Introduction and Measurement. Active Power, Reactive Power, Apparent Power.	On-campus study	Reports
Week 6	5	Experiment: Soft Starters Setting up a soft starter for controlled motor starting. Analyzing the voltage ramp-up and torque control.	Power Factor and its Significance in Motor Operation. Power Measurement Techniques and Instruments.	On-campus study	Assignments
Week	5	Experiment: Variable Frequency	Motor Starter Components:	On-campus	Quizzes

7		Drives (VED) Pagies	Introduction and Functions.	atu des	
/		Drives (VFD) Basics Configuring and operating a VFD	Contactors, Overload	study	
		for motor speed control.	Relays, Circuit Breakers.		
		Observing the impact on motor	Relays, circuit breakers.		
		performance and energy			
		consumption.			
		Experiment: VFD Parameters and	Control Circuits and		
		Control Settings	Interlocks for Motor		
Week	_	Exploring different parameter	Starters.	On-campus	_
8	5	settings in a VFD.	Protection Devices for	_	Reports
		Analyzing the effects on motor	Motor Starters.	Study	
		response and energy efficiency.			
		Experiment: VFD Protection and	Starting Methods of		
		Troubleshooting	Induction Motors: Direct-		
Mode		Simulating overvoltage and	on-line (DOL) starting.	On sampus	
Week	5	overcurrent conditions.	Starting Methods of	_	Assignments
9		Observing the protection	Induction Motors: Star-	stuay	
		mechanisms and troubleshooting	delta starting.		
		techniques.			
1		Experiment: VFD Installation Best	Starting Methods of		
		Practices	Induction Motors: Auto-		
Week	5	Proper grounding and cable routing	transformer starting.		Quizzes
10	3	for VFD installations.	Starting Methods of	study	Quizzes
		Analyzing the impact on electrical	Induction Motors: Rotor		
		noise and interference.	resistance starting.		
		Experiment: VFD Sizing and	Solid-State Starters:		
*** 1		Selection	Introduction and		
Week	5	Calculating VFD requirements	Advantages.	_	Reports
11		based on motor specifications.	Soft Starters: Principles of	study	1
		Testing the performance of	Operation and Benefits.		
		properly sized VFDs.	Variable Erequency Drives		
		Experiment: Speed Control with VFDs	Variable Frequency Drives (VFDs): Introduction and		
Week			Principles.	On-campus	
12	5	Implementing various speed control methods using VFDs.	VFD Operation: AC-DC-AC	_	Assignments
12		Evaluating the accuracy and	Conversion, Pulse Width	Study	
		response of speed control.	Modulation.		
		Experiment: Energy Efficiency	VFD Speed Control and		
		Analysis with VFDs	Torque Control Techniques.		
Week	_	Measuring power consumption	Energy Efficiency Benefits	On-campus	
13	5	with and without VFDs.	of VFDs.	_	Quizzes
		Calculating energy savings and			
		efficiency improvement.		On-campus study On-campus study	
		Experiment: Advanced VFD	Parameters Description of		
		Applications	VFDs: Motor-related		
Week	5	Integrating VFDs into complex	Parameters.	On-campus	Reports
14	3	motor control systems.	Parameters Description of	study	Reports
		Exploring specialized functions and	VFDs: Control Parameters.	-	
		communication protocols.			
		Lab assessment and project	VFD Protection and		
		showcase	Installation: Common		
Week	5	Student presentations on specific	Protection Features.	_	Assignments
15	3	lab experiments and projects.	VFD Protection and	study	11001811110110
			Installation: Proper		
			Grounding, Cable Selection,		

	Noise Mitigation.	

As	As		Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	Total assessment		100% (100 Marks)		

14. Learning and Teaching Resources

Hughes and B. Drury, "Electric Motors and Drives: Fundamentals, Types and Applications," 3rd ed. Oxford, UK: Newnes, 2013.

R. Krishnan, "Electric Motor Drives: Modeling, Analysis, and Control," Upper Saddle River, NJ: Prentice Hall, 2001. Hughes and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications. Oxford, UK: Newnes, 2013. R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. Hoboken, NJ: Wiley, 2001.

Course Description Form

1. Course Name:

Power Systems Analysis

2. Course Code:

EET4103

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Power Systems Analysis module aims to achieve the following objectives:

1. To provide a clear overview, the aims of the Power Systems Analysis module are as follows:

- 2. To develop a comprehensive understanding of the fundamental concepts and principles that underpin power system analysis.
- 3. To familiarize students with the mathematical tools and techniques employed in power system analysis, including the per unit system, node equations, single line diagram and impedance/reactance diagrams.
- 4. To enable students to effectively utilize the bus admittance matrix and bus impedance matrix in network calculations and analysis.
- 5. To equip students with the skills and knowledge necessary to solve the power flow problems by employing methods such as the Gauss-Seidel power flow solution.
- 6. To cultivate an understanding of symmetrical faults in power systems and their implications on the system operation and protection.
- 7. To empower students to analyze and interpret power system behavior, encompassing voltage levels, current flows, and power flows.
- 8. To enhance problem-solving and critical-thinking abilities through practical applications and exercises centered on power systems analysis.
- 9. To foster an awareness of the challenges and considerations involved in power system analysis, including system stability, voltage control, and fault analysis.
- 10. To encourage students to apply power system analysis techniques to real-world scenarios, considering factors such as system reliability, efficiency, and safety.

To promote effective communication and collaboration skills through engaging in group discussions, delivering presentations, and undertaking project work focused on power systems analysis.

9. Teaching and Learning Strategies

The Power Systems Analysis module can employ a variety of learning and teaching strategies to facilitate effective understanding and application of the subject matter. Some common strategies used in this module include:

- 1. Lectures: Instructors deliver lectures to introduce key concepts, theories, and principles related to power systems analysis. Lectures provide a structured overview of the topic and can include examples, demonstrations, and visuals to enhance understanding.
- 2. Practical Work: Practical sessions allow students to apply the theoretical knowledge gained in lectures. This can involve using software tools for power system analysis, solving numerical problems, and conducting experiments or simulations to analyze power system behavior.
- 3. Problem-Solving Exercises: In-class or homework exercises are assigned to students to practice problem-solving skills and reinforce understanding of power system analysis techniques. These exercises can involve solving power flow problems, analyzing fault scenarios, and calculating system parameters.
- 4. Case Studies: Case studies provide real-world examples and scenarios where students can apply power system analysis techniques. Students analyze and interpret data, identify issues, and propose solutions based on their understanding of power system analysis principles.
- 5. Group Discussions and Presentations: Group discussions and presentations encourage active participation and collaboration among students. They provide opportunities to discuss and debate power system analysis topics, share insights, and present findings from case studies or practical work.
- 6. Laboratory Work: Laboratory sessions offer hands-on experiences with power system analysis equipment and tools. Students can conduct experiments, collect data, and analyze the behavior of power system components under various conditions.
- 7. Computer-Based Simulations: Computer-based simulations enable students to explore power system behavior in a controlled virtual environment. Simulations can help students visualize the effects of parameter changes, faults, and control strategies on system operation.
- 8. Guest Lectures and Industry Visits: Inviting guest speakers from the power industry or organizing visits to power system facilities provide real-world perspectives and insights. Industry professionals can share their experiences, challenges, and practical applications of power system analysis.

- 9. Self-Directed Learning: Encouraging students to engage in independent study and research fosters self-directed learning. This can involve reading recommended textbooks, scholarly articles, and online resources to deepen understanding of power system analysis concepts.
- 10. Assessments: Regular assessments, such as quizzes, exams, and coursework, evaluate students' knowledge and understanding of power system analysis. These assessments can include problem-solving questions, analysis of case studies, and interpretation of power system data.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
VVCCK	liouis	Outcomes	offic of subject frame	method	method
Week 1	5	Introduction to Power Systems Analysis Software Familiarization with power system analysis software tools. Basic software functionalities and user interface navigation.	Introduction to Power Systems Analysis Overview of power systems and their components. Basic power system equations and concepts.	On-campus study	Quizzes
Week 2	5	Per Unit System and Node Equations in Software Utilizing power system analysis software for per unit calculations. Inputting and solving node equations using software.	Per Unit System and Node Equations Introduction to the per unit system and its advantages. Conversion of quantities to per unit values. Formulation and solution of node equations.	On-campus study	Reports
Week 3	5	Single Line Diagrams and Impedance Diagrams in Software Creating single line diagrams in software. Generating impedance diagrams and analyzing power system components.	Single Line Diagrams and Impedance Diagrams Representation of power systems using single line diagrams. Interpretation of single line diagrams for system analysis. Construction and analysis of impedance diagrams.	On-campus study	Assignments
Week 4	5	Bus Admittance Matrix and Network Calculations in Software Constructing the bus admittance matrix using software. Performing network calculations and analyzing results.	Bus Admittance Matrix and Network Calculations Introduction to the bus admittance matrix. Construction of the bus admittance matrix from system data. Network calculations using the bus admittance matrix.	On-campus study	Quizzes
Week 5	5	Bus Impedance Matrix and Network Calculations in Software Building the bus impedance matrix using software. Conducting network calculations and interpreting the outcomes.	Bus Impedance Matrix and Network Calculations Introduction to the bus impedance matrix. Construction of the bus impedance matrix from system data. Network calculations using the bus impedance matrix.	On-campus study	Reports
Week	5	Power Flow Analysis in Software	Power Flow Problem and	On-campus	Assignments

6		Setting up power flow studies in software. Analyzing power flow results and identifying system conditions.	Gauss-Seidel Power Flow Solution Formulation of the power flow problem and its importance. Iterative methods for solving power flow equations. Application of Gauss-Seidel method to solve the power flow problems.	study	
Week 7	5	Symmetrical Fault Analysis in Software Simulating symmetrical faults using software. Analyzing fault currents, voltages, and their impact on the system.	Symmetrical Faults Introduction to symmetrical faults and their types. Calculation of fault currents and voltages in power systems. Analysis of system behavior during symmetrical faults.	On-campus study	Quizzes
Week 8	5	Stability Analysis in Software Conducting stability studies using software tools. Evaluating system stability and identifying potential issues.	Power System Analysis Software Tools Introduction to software tools commonly used for power system analysis. Hands-on experience with power system analysis software. Interpretation and analysis of results obtained from software tools.	On-campus study	Reports
Week 9	5	Voltage Control and Reactive Power Analysis in Software Analyzing voltage control strategies using software. Performing reactive power analysis and voltage regulation.	Practical Applications and Case Studies Application of power system analysis techniques to real- world scenarios. Case studies highlighting power system analysis challenges and solutions. Analysis of system stability, voltage control, and fault scenarios.	On-campus study	Assignments
Week 10	5	Protection Coordination in Software Utilizing software for protective device coordination. Analyzing fault clearing times and coordination curves.	Problem-Solving Exercises and Review In-class problem-solving exercises to reinforce concepts and techniques. Review of key topics and techniques covered in the module.	On-campus study	Quizzes
Week 11	5	Load Flow Control and Optimization in Software Applying load flow control techniques using software. Optimizing system operation and analyzing load flow results.	Group Discussions and Presentations Group discussions on power system analysis topics and case studies. Student presentations on specific power system analysis applications or research.	On-campus study	Reports

Week 12	5	Transient Stability Analysis in Software Simulating transient stability using software tools. Assessing system behavior during transient events.	Laboratory Work and Simulations Hands-on laboratory sessions to analyze power system behavior. Computer-based simulations to explore power system operation and control.	On-campus study	Assignments
Week 13	5	Renewable Integration Analysis in Software Analyzing renewable energy integration using software. Evaluating the impact of renewable sources on system operation.	Guest Lecture or Industry Visit Inviting a guest speaker from the power industry or organizing a visit to a power system facility to gain industry insights and perspectives.	On-campus study	Quizzes
Week 14	5	Advanced Topics and Case Studies in Software Exploring advanced power system analysis topics using software. Investigating case studies and real-world applications.	Final Review and Assessment Preparation Final review of key concepts and techniques. Preparation for the final assessment, including practice exercises and review sessions.	On-campus study	Reports
Week 15	5	Project Work and Presentation Undertaking a project using power system analysis software. Presenting project findings and conclusions.	Final Assessment.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

J. J. Grainger and W. D. Stevenson Jr., "Power Systems Analysis," 2nd ed. New York, NY: McGraw-Hill, 1994.

H. Saadat, "Power System Analysis," 3rd ed. New York, NY: McGraw-Hill, 2010.

V. K. Mehta Rohit Mehta "Principles of power system," 4th ed. RAM Nagar, New Delhi, 2008.

1. Course Name:

Electric Power Generation Stations

2. Course Code:

EET4104

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Electric Power Generation Stations module include:

- 1. To provide students with a comprehensive understanding of electric power generation stations, their purpose, and their role in meeting the electricity demands of society.
- 2. To familiarize students with various power generation technologies, such as thermal stations, hydroelectric stations, diesel electric stations, nuclear power stations, and gas turbine plants, including their working principles, components, advantages, and limitations.
- 3. To help students gain knowledge about the major electrical equipment used in power stations, such as transformers, generators, turbines, and control systems, and to explain their functions, operational characteristics, and integration within the power generation process.
- 4. To educate students about the operational considerations and safety measures involved in power generation stations, covering topics such as maintenance practices, environmental impact, safety protocols, and regulatory compliance.
- 5. To provide students with an understanding of how power generation stations operate within a larger power system, exploring concepts such as load balancing, combined operation of power systems, grid stability, and the integration of renewable energy sources.
- 6. To enhance students' problem-solving skills and critical thinking abilities in the context of electric power generation stations, through practical exercises, case studies, and discussions to analyze and address various challenges related to power generation.
- 7. To raise awareness about the importance of energy efficiency and sustainable practices in power generation, covering topics such as energy conservation, renewable energy integration, and the transition towards cleaner and more sustainable power generation technologies.
- 8. To provide students with opportunities to apply their knowledge in practical scenarios, through projects, simulations, or hands-on exercises, reinforcing the concepts learned and encouraging critical and creative thinking.

To equip students with a solid foundation in electric power generation stations, enabling them to

understand the technical aspects, operational considerations, and challenges associated with generating electricity in various power generation facilities.

9. Teaching and Learning Strategies

The Electric Power Generation Stations module can be taught using a variety of learning and teaching strategies to enhance student engagement and understanding. Here are some suggested strategies:

- 1. Lectures: Conducting lectures to deliver theoretical concepts, principles, and foundational knowledge related to power generation stations. These lectures can be accompanied by visual aids, such as slides or diagrams, to facilitate understanding.
- 2. Case Studies: Presenting real-world case studies of power generation stations to illustrate practical applications, challenges, and decision-making processes. This allows students to analyze and apply their knowledge in realistic scenarios.
- 3. Laboratory Sessions: Organizing laboratory sessions to provide hands-on experience with electrical equipment and systems commonly found in power generation stations. Students can engage in practical exercises, measurements, and troubleshooting activities to reinforce their theoretical understanding.
- 4. Group Discussions: Encouraging group discussions and brainstorming sessions to promote active learning. Students can share their perspectives, exchange ideas, and collectively solve problems related to power generation stations.
- 5. Site Visits and Guest Speakers: Arranging site visits to operating power generation stations or inviting industry professionals as guest speakers. This offers students the opportunity to observe power generation facilities firsthand and learn from experts who can provide insights into practical challenges and industry practices.
- 6. Simulations and Virtual Labs: Utilizing computer simulations and virtual laboratory environments to simulate power generation processes, control systems, and system operation. This allows students to experiment, observe outcomes, and analyze results in a controlled virtual setting.
- 7. Project-based Learning: Assigning individual or group projects that require students to design, analyze, or optimize power generation systems. This hands-on approach fosters critical thinking, problem-solving skills, and application of theoretical knowledge in practical scenarios.
- 8. Collaborative Learning: Promoting collaborative learning activities, such as group projects or problem-solving exercises, to encourage teamwork, communication, and the exchange of ideas among students. This can be done in-class or through online collaboration platforms.
- 9. Assessments: Employing a variety of assessment methods, including quizzes, exams, assignments, and presentations, to evaluate students' understanding of the concepts and their ability to apply knowledge to solve problems related to power generation stations.
- 10. Technology Integration: Utilizing educational technologies, such as interactive simulations, online resources, and virtual learning environments, to supplement learning materials and engage students in self-paced learning activities.

Reflective Practice: Encouraging students to reflect on their learning experiences and consolidate their understanding through activities like journaling, self-assessment, or group reflections. This helps students develop metacognitive skills and deepen their comprehension of the subject matter.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Lab Safety and Introduction to Electrical Equipment Safety protocols and guidelines in the lab. Introduction to electrical	Introduction to Electric Power Generation Stations Importance of power generation stations. Overview of power generation,	On-campus study	Quizzes

		equipment used in power generation stations (transformers, generators, etc.). Familiarization with lab instruments and tools.	transmission, and distribution systems.		
Week 2	5	Thermal Power Plant Lab Hands-on experience with a thermal power plant simulator or a scaled-down model. Operating and monitoring the components of a thermal power plant (boilers, turbines, generators, etc.). Analyzing the impact of various parameters on plant performance.	Thermal Stations Working principles of thermal power plants. Components of a thermal power plant. Types of fuels used in thermal power generation.	On-campus study	Reports
Week 3	5	Hydroelectric Power Plant Lab Experimentation with a hydroelectric power plant model or simulator. Operating and observing the components of a hydroelectric power plant (dams, turbines, generators). Measuring and analyzing energy conversion and efficiency.	Hydro-electric Station Overview of hydroelectric power generation. Types of hydroelectric power plants. Components of a hydroelectric power plant.	On-campus study	Assignments
Week 4	5	Diesel Electric Power Plant Lab Working with diesel engines and generators in the lab. Starting, stopping, and monitoring diesel engines. Assessing the performance and characteristics of a diesel electric power plant.	Diesel Electric Station Introduction to diesel electric power generation. Working principles of diesel engines. Components of a diesel electric power plant.	On-campus study	Quizzes
Week 5	5	Nuclear Power Plant Lab Simulation or experimental setup to study nuclear power generation. Understanding the operation and control of nuclear reactors. Measurement of radiation levels and safety precautions.	Nuclear Power Stations Overview of nuclear power generation. Types of nuclear reactors. Safety measures and considerations in nuclear power plants.	On-campus study	Reports
Week 6	5	Gas Turbine Power Plant Lab Hands-on experience with gas turbine systems. Operating and monitoring gas turbines in a lab setting. Analyzing the efficiency and performance of gas turbine power plants.	Gas Turbine Plants Introduction to gas turbine power generation. Working principles of gas turbines. Open-cycle and combined- cycle gas turbine plants.	On-campus study	Assignments
Week 7	5	Control Systems and Protection Lab Experimentation with control	Combined Operation of Power Systems Coordinated operation of	On-campus study	Quizzes

		systems used in power generation stations. Programming and testing control algorithms. Evaluating the effectiveness of protection systems in power plants.	power generation stations. Load balancing and frequency control. Integration of renewable energy sources in power systems.		
Week 8	5	Variable Load Management Lab Simulation or experimental setup for load forecasting and management. Implementing load balancing strategies and demand response techniques. Analyzing the impact of variable loads on power system stability.	Major Electrical Equipment in Power Stations Transformers: types, functions, and operation. Generators: types, characteristics, and control. Switchgear and protection devices.	On-campus study	Reports
Week 9	5	Instrumentation and Measurement Lab Practical exercises on electrical measurements in power generation stations. Calibration and use of instruments such as multimeters, oscilloscopes, and power analyzers. Data acquisition and analysis techniques.	Variable Load Problem Load forecasting techniques. Load management strategies. Energy storage systems for load balancing.	On-campus study	Assignments
Week 10	5	Renewable Energy Integration Lab Experimentation with the integration of renewable energy sources in power systems. Assessing the performance and challenges of renewable energy integration. Investigating control strategies for maximizing renewable energy utilization.	Site Visit to a Power Generation Station Organize a site visit to an operational power generation station to observe the equipment, control systems, and operations firsthand.	On-campus study	Quizzes
Week 11	5	Troubleshooting and Maintenance Lab Practical exercises on troubleshooting electrical equipment and systems. Identifying and rectifying common faults in power generation stations. Performing routine maintenance tasks on equipment.	Case Studies and Guest Speaker Session Real-world case studies of power generation stations. Guest speaker session from industry professionals.	On-campus study	Reports
Week 12	5	Project Work Working on individual or group projects related to power generation systems. Designing, analyzing, or optimizing a power generation system.	Laboratory Session Hands-on experience with electrical equipment and systems. Practical exercises, measurements, and troubleshooting activities.	On-campus study	Assignments

		Presenting project progress and findings to peers and instructors.			
Week 13	5	Lab Report Writing and Documentation Guided sessions on writing lab reports and documentation. Practice in documenting experimental procedures, results, and analysis. Developing technical writing skills for effective communication.	Project-based Learning Individual or group projects on power generation system design or optimization.	On-campus study	Quizzes
Week 14	5	Lab Review and Revision Recap of key lab experiments and concepts covered throughout the module. Review of data analysis techniques and lab procedures.	Environmental and Sustainability Considerations Energy efficiency and conservation in power generation. Integration of sustainable practices in power stations.	On-campus study	Reports
Week 15	5	Final Lab Assessment Final lab assessment to evaluate students' practical skills and understanding. Demonstration of competency in conducting experiments, analyzing data, and troubleshooting electrical equipment.	Review and Revision, Final Assessments Recap of key concepts and topics covered throughout the module. Review of problem-solving techniques and applications. Final exams, assignments, or presentations to assess students' understanding of the module content.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

P. K. Nag, "Power Plant Engineering," 3rd ed. New Delhi, India: McGraw-Hill Education, 2014.

S. N. Singh, "Electric Power Generation, Transmission, and Distribution," 2nd ed. Boca Raton, FL: CRC Press, 2018.

1. Course Name:

Control Systems Analysis

2. Course Code:

EET4105

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the Control Systems Analysis Module are to provide students or participants with a solid understanding of the following:

- 1. To provide students with a comprehensive understanding of control systems analysis, the module aims to cover topics such as the introduction to control systems, transfer function analysis, and block diagram reduction.
- 2. To enhance students' analytical skills, the module focuses on signal flow graphs and the application of the Mason rule for calculating transfer functions.
- 3. To prepare students for multivariable control systems, the module delves into the concept of transfer matrices and their role in analyzing systems with multiple inputs and outputs.
- 4. To develop a solid foundation in control systems theory, the module introduces state space representation and emphasizes its application in system analysis and design.
- 5. To expose students to modern control system techniques, the module explores advanced topics including optimal control, robust control, adaptive control, and nonlinear control.
- 6. To enable students to assess control system behavior in the time domain, the module covers time domain analysis techniques such as step response analysis and meeting time-domain specifications.

To ensure a comprehensive understanding of stability analysis, the module includes topics such as Routh stability analysis and the root locus method for assessing system stability and transient response.

9. Teaching and Learning Strategies

The module may employ various learning and teaching strategies to facilitate the acquisition of knowledge and development of skills. Some common strategies include:

- 1. Lectures: In-class lectures delivered by the instructor provide foundational knowledge and explanations of key concepts and theories. This allows students to understand the theoretical aspects of control systems analysis.
- 2. Practical Demonstrations: Practical demonstrations and examples help students connect theoretical concepts to real-world applications. They may involve the use of simulation software, control

system hardware, or case studies to illustrate how control systems are implemented and analyzed in practice.

- 3. Problem-Solving Sessions: Dedicated problem-solving sessions allow students to apply their knowledge and skills to solve control system analysis problems. These sessions may be conducted in class or in smaller groups, enabling active participation and collaborative learning.
- 4. Tutorial Sessions: Tutorials provide an opportunity for students to engage in interactive discussions and seek clarification on challenging topics. They may involve solving practice problems, reviewing assignments, or addressing specific queries related to the module content.
- 5. Computer-Based Tools: The use of computer-based tools and software, such as MATLAB or control system simulation software, can aid in visualizing and analyzing control system behavior. Students may be assigned tasks or projects that involve utilizing these tools to reinforce theoretical concepts.
- 6. Group Projects: Group projects encourage teamwork and collaboration among students. They may involve designing and analyzing control systems for specific applications or conducting experiments to validate control system performance. These projects promote practical application of knowledge and the development of problem-solving and communication skills.
- 7. Self-Study and Research: Encouraging self-study and research allows students to deepen their understanding of control systems analysis beyond the core module content. Assigning additional readings, research assignments, or encouraging independent exploration of related topics can foster independent learning and critical thinking.

Assessment Methods: Various assessment methods, such as written exams, quizzes, assignments, and project presentations, may be employed to evaluate students' knowledge and skills in control systems analysis. These assessments assess their understanding, problem-solving abilities, and application of theoretical concepts.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to MATLAB Introduction to MATLAB environment and basic commands. Creating and manipulating variables and arrays. Plotting functions and data in MATLAB.	Introduction to Control Systems Basic concepts of control systems. Types of control systems: open-loop and closed-loop. Feedback control and control objectives.	On-campus study	Quizzes
Week 2	5	Transfer Function Analysis in MATLAB Creating transfer function models in MATLAB. Frequency response analysis using Bode plots in MATLAB.	Transfer Function Analysis Definition and properties of transfer functions. Transfer function models for various system elements. Frequency response analysis and Bode plots.	On-campus study	Reports
Week 3	5	Block Diagram Reduction in MATLAB Implementing block diagram reduction techniques in MATLAB. Simulating and analyzing control system structures using block diagrams in MATLAB.	Block Diagram Reduction Block diagram representation of control systems. Block diagram algebra and simplification techniques.	On-campus study	Assignments
Week	5	Signal Flow Graph and Mason	Signal Flow Graph and Mason	On-campus	Quizzes

4		Rule in MATLAB Constructing signal flow graphs in MATLAB. Applying the Mason rule to calculate transfer functions in MATLAB.	Rule Construction and interpretation of signal flow graphs. Mason's gain formula for calculating transfer functions.	study	
Week 5	5	Multivariable Systems and Transfer Matrices in MATLAB Representing multivariable control systems using transfer matrices in MATLAB. Analyzing and designing multivariable systems in MATLAB.	Multivariable Systems and Transfer Matrices Introduction to multivariable control systems. Transfer matrix representation of multivariable systems.	On-campus study	Reports
Week 6	5	State Space Representation in MATLAB Creating state space models in MATLAB. Simulating and analyzing control systems in state space form using MATLAB.	State Space Theory Introduction to state space representation. State equations and output equations.	On-campus study	Assignments
Week 7	5	Modern Control System Techniques in MATLAB Implementing advanced control system techniques in MATLAB. Optimization-based control design in MATLAB.	State Space Representation State transition matrix and its properties. Controllability and observability in state space.	On-campus study	Quizzes
Week 8	5	Time Domain Analysis in MATLAB Analyzing step and impulse responses in MATLAB. Meeting time-domain specifications using MATLAB.	Modern Control System Techniques Overview of advanced control system techniques. Optimal control, robust control, adaptive control, and nonlinear control.	On-campus study	Reports
Week 9	5	Stability Analysis: Routh Stability Analysis in MATLAB Implementing Routh stability analysis in MATLAB. Determining system stability and analyzing stability margins using MATLAB.	Time Domain Analysis Step response analysis and performance specifications. Impulse response analysis and system dynamics.	On-campus study	Assignments
Week 10	5	Stability Analysis: Root Locus Method in MATLAB Constructing root locus plots in MATLAB. Analyzing system stability and transient response using root locus plots in MATLAB.	Stability Analysis: Routh Stability Analysis Routh stability criterion and its application. Determination of system stability based on Routh array.	On-campus study	Quizzes
Week 11	5	Design and Simulation Project 1 Designing and simulating a control system using MATLAB. Analyzing the performance and stability of the designed system.	Stability Analysis: Root Locus Method Introduction to root locus method. Construction of root locus	On-campus study	Reports

			plots.		
Week 12	5	Design and Simulation Project 2 Designing and simulating a more complex control system using MATLAB. Evaluating the system's performance and stability.	Stability Analysis: Root Locus Method (continued) Analysis of system stability and transient response from root locus plots.	On-campus study	Assignments
Week 13	5	Experimental Validation Project Implementing a control system design on hardware or simulation software. Conducting experiments to validate the control system's performance.	Review and Recapitulation	On-campus study	Quizzes
Week 14	5	Case Studies and Applications in MATLAB Solving real-world control system problems using MATLAB. Analyzing and designing control systems for specific applications.	Case Studies and Applications Application of control systems analysis in real- world scenarios. Case studies and examples of control system analysis and design.	On-campus study	Reports
Week 15	5	Review and Final Assessment Preparation.	Review and Final Assessment Preparation.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative assessment	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	1 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessm	ent		100% (100 Marks)		

12. Learning and Teaching Resources

K. Ogata, "Modern Control Engineering," 5th ed. Boston, MA, USA: Pearson Education, 2010.

N. S. Nise, "Control Systems Engineering," 7th ed. Hoboken, NJ, USA: Wiley, 2015.

Course Description Form

1. Course Name:

Project 1

2. Course Code:

EET4106

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The module aims of the Project 1 module can be summarized as follows:

- 1. Project Topic Selection: The module aims to guide students in selecting appropriate project topics within the field of electrical engineering. This includes exploring various areas of interest, considering the relevance and feasibility of different project ideas, and making informed decisions based on their individual interests and career aspirations.
- 2. Electrical Engineering Project Planning: The module aims to develop students' skills in project planning specific to their selected electrical engineering project topics. This involves aligning the project objectives with the chosen topic, defining the scope and boundaries of the project, and creating a comprehensive project plan that incorporates electrical engineering principles and methodologies.
- 3. Literature Review in Electrical Engineering: The module aims to enhance students' ability to conduct a literature review specific to their selected project topics in electrical engineering. This includes identifying key research papers, technical resources, and relevant industry standards related to their specific project areas, and analyzing the existing knowledge and research gaps within their chosen topic.
- 4. Proposal Development for Selected Electrical Engineering Projects: The module aims to guide students in developing a project proposal tailored to their selected project topics in electrical engineering. This includes formulating research objectives that align with their chosen topic, designing experiments or simulations specific to their project area, and outlining the expected outcomes and impact of their proposed project.
- 5. Electrical Engineering Research and Project Management Skills: The module aims to help students develop essential research and project management skills directly applicable to their selected electrical engineering projects. This includes skills related to designing and implementing electrical circuits, data collection and analysis techniques, utilizing simulation software, selecting appropriate equipment and materials, and optimizing electrical systems.
- 6. Technical Communication in Electrical Engineering: The module aims to improve students' technical communication skills within the context of their selected electrical engineering projects. This

includes effectively presenting their project ideas, methodologies, results, and findings in a clear and concise manner, using appropriate electrical engineering terminology and visual aids.

- 7. Critical Thinking and Analysis in Electrical Engineering: The module aims to foster students' critical thinking skills within the context of their selected electrical engineering projects. This involves evaluating and comparing different approaches and solutions, analyzing experimental data and simulation results, troubleshooting electrical systems, and making informed decisions based on technical considerations within their specific project areas.
- 8. Ethical Considerations in Electrical Engineering Projects: The module aims to raise students' awareness of ethical considerations specific to their selected electrical engineering projects. This includes understanding the ethical implications of their research, ensuring the responsible and sustainable use of technology, and addressing potential ethical challenges related to their specific project topics.

 Self-Reflection and Professional Development in Electrical Engineering: The module aims to encourage students to reflect on their own learning and professional development within the context of their selected.

students to reflect on their own learning and professional development within the context of their selected electrical engineering project topics. This includes identifying areas for improvement, exploring emerging technologies and trends relevant to their projects, and actively engaging in continuous learning and professional growth within their chosen project areas.

Teaching and Learning Strategies

The learning and teaching strategies for the Project 1 module in electrical engineering can vary based on the educational institution's approach and the specific preferences of the instructors. However, here are some commonly employed strategies that can be effective for this module:

- 1. Lectures: Instructors can deliver lectures to provide theoretical foundations, introduce concepts, and explain project planning methodologies specific to electrical engineering. These lectures can also cover topics related to literature review, research skills, and ethical considerations.
- 2. Practical Workshops: Practical workshops allow students to apply their knowledge and skills in a hands-on environment. These sessions can involve designing and implementing electrical circuits, using software tools for data analysis, and conducting experiments or simulations related to their project topics.
- 3. Group Discussions: Facilitating group discussions allows students to share their project ideas, discuss research findings, and explore different perspectives on electrical engineering topics. This can promote critical thinking, collaboration, and knowledge sharing among students.
- 4. Literature Review Assignments: Assignments focused on conducting a literature review help students develop research skills and gain a deeper understanding of their chosen project area. They can learn to evaluate and synthesize existing knowledge, identify research gaps, and consider the engineering and scientific implications of the literature findings.
- 5. Project Proposal Development: Guided sessions on project proposal development assist students in formulating clear research objectives, designing methodologies, and defining the scope of their projects. Instructors can provide feedback and guidance throughout the proposal development process.
- 6. Mentorship and Guidance: Providing individual or group mentorship sessions allows students to receive personalized guidance from instructors or industry professionals. These sessions can address specific challenges, offer technical advice, and support the students' project planning and implementation.
- 7. Guest Speakers: Inviting guest speakers from industry or academia can expose students to real-world applications and perspectives in electrical engineering. These speakers can share their experiences, provide insights into the engineering and scientific implications of specific topics, and inspire students in their project work.
- 8. Assessment and Feedback: Regular formative assessments, such as quizzes or progress reports, can help students track their understanding and progress. Summative assessments, including project proposal submissions, project reports, and presentations, allow for comprehensive evaluation of the students' performance. Timely and constructive feedback from instructors and the examine committee supports students' learning and improvement.
- 9. Online Resources and Tools: Utilizing online resources, such as research databases, educational

platforms, and simulation tools, can enhance students' access to information, facilitate self-directed learning, and provide opportunities for remote collaboration.

10. Self-Reflection and Peer Evaluation: Encouraging students to reflect on their learning journey, set personal goals, and assess their own progress fosters a sense of ownership and accountability. Peer evaluations and peer feedback sessions can also promote collaboration and provide additional perspectives on project ideas and implementation.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to the module and course objectives. Overview of project planning principles and methodologies. Introduction to research skills and literature review in electrical engineering.	Introduction to the module and course objectives. Overview of project planning principles and methodologies. Introduction to research skills and literature review in electrical engineering.	On-campus study	Quizzes
Week 2	5	Selecting and proposing project topics. Formulating research questions or problem statements. Understanding the engineering and scientific implications of project topics.	Selecting and proposing project topics. Formulating research questions or problem statements. Understanding the engineering and scientific implications of project topics.	On-campus study	Reports
Week 3	5	Conducting a literature review in electrical engineering. Searching and accessing relevant literature sources. Evaluating and critically analyzing research papers and technical documents.	Conducting a literature review in electrical engineering. Searching and accessing relevant literature sources. Evaluating and critically analyzing research papers and technical documents.	On-campus study	Assignments
Week 4	5	Identifying research gaps and emerging trends in the chosen project area. Synthesizing information from the literature review. Considering the engineering and scientific implications of the literature findings.	Identifying research gaps and emerging trends in the chosen project area. Synthesizing information from the literature review. Considering the engineering and scientific implications of the literature findings.	On-campus study	Quizzes
Week 5	5	Defining project objectives and scope. Designing methodologies or experimental setups. Addressing ethical considerations and potential challenges in the project proposal.	Defining project objectives and scope. Designing methodologies or experimental setups. Addressing ethical considerations and potential challenges in the project proposal.	On-campus study	Reports
Week 6	5	Creating a project plan, timeline, and work breakdown structure.	Creating a project plan, timeline, and work breakdown structure.	On-campus study	Assignments

		Time management techniques and strategies for effective project scheduling. Resource allocation and optimization in electrical engineering projects.	Time management techniques and strategies for effective project scheduling. Resource allocation and optimization in electrical engineering projects.		
Week 7	5	Practical workshop: Hands-on session on electrical circuit design and analysis techniques. Data collection methods and analysis using software tools and equipment.	Practical workshop: Handson session on electrical circuit design and analysis techniques. Data collection methods and analysis using software tools and equipment.	On-campus study	Quizzes
Week 8	5	Refining the project proposal based on feedback. Presenting the project proposal to the class for discussion and feedback.	Refining the project proposal based on feedback. Presenting the project proposal to the class for discussion and feedback.	On-campus study	Reports
Week 9	5	Implementing the project plan: conducting experiments, simulations, or data collection. Troubleshooting and adapting the project plan as needed.	Implementing the project plan: conducting experiments, simulations, or data collection. Troubleshooting and adapting the project plan as needed.	On-campus study	Assignments
Week 10	5	Analysis and interpretation of experimental data or simulation results. Assessing the engineering and scientific implications of the project findings.	Analysis and interpretation of experimental data or simulation results. Assessing the engineering and scientific implications of the project findings.	On-campus study	Quizzes
Week 11	5	Practical workshop: Software simulations and analysis related to electrical engineering projects. Visual aids and data visualization techniques for effective communication.	Practical workshop: Software simulations and analysis related to electrical engineering projects. Visual aids and data visualization techniques for effective communication.	On-campus study	Reports
Week 12	5	Writing project documentation, reports, and interim progress reports. Effective written communication skills for technical documentation.	Writing project documentation, reports, and interim progress reports. Effective written communication skills for technical documentation.	On-campus study	Assignments
Week 13	5	Oral presentations of the project progress and findings. Effective oral communication skills for presenting technical information.	Oral presentations of the project progress and findings. Effective oral communication skills for presenting technical information.	On-campus study	Quizzes
Week 14	5	Self-reflection and personal development: Reflection on the learning journey and setting goals for continuous improvement. Exploration of emerging	Self-reflection and personal development: Reflection on the learning journey and setting goals for continuous improvement. Exploration of emerging	On-campus study	Reports

		technologies and advancements in electrical engineering.	technologies and advancements in electrical engineering.		
Week 15	5	Preparatory week before the final Exam.	Preparatory week before the final Exam.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	1 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

C. L. Rethlefsen and R. E. Karper, "Engineering Research: Planning, Writing, and Presenting," 2nd ed. New York, NY, USA: Taylor & Francis, 2019.

D. S. Viswanath, "Research Methods for Engineers," 2nd ed. Boca Raton, FL, USA: CRC Press, 2018.

Course Description Form

1. Course Name:

Power Systems Protection

2. Course Code:

EET4202

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Power Systems Protection module aims to achieve several key objectives:

- 1. To provide students with a comprehensive understanding of power systems protection principles and concepts, the module aims to cover topics such as fault analysis, protective devices, and system coordination.
- 2. To ensure practical knowledge and skills, the module aims to familiarize students with various protection equipment used in power systems, including circuit breakers, relays, and associated devices.
- 3. To enhance system reliability and security, students will learn about the importance of redundancy and backup protection in the design and implementation of protection schemes.
- 4. To develop students' analytical abilities, the module will focus on analyzing protection schemes for different power system components, such as transmission lines, generators, and transformers.
- 5. To enable effective troubleshooting and fault diagnosis, students will learn to interpret relay operation data, analyze fault records, and identify the root causes of system disturbances.
- 6. To stay up to date with the latest advancements and challenges, the module will explore emerging technologies in power systems protection, such as renewable energy integration, smart grids, and cybersecurity considerations.
- 7. To encourage practical application of knowledge, the module may include case studies and simulation exercises to simulate real-world protection scenarios.
- 8. To foster critical thinking and problem-solving skills, students will be encouraged to evaluate and propose improvements to existing protection schemes based on industry standards and best practices.
- 9. To promote a holistic understanding of power systems protection, the module may also address ethical considerations, environmental impact, and regulatory requirements associated with protection systems.

To facilitate active learning and engagement, the module may include group discussions, hands-on laboratory experiments, and project assignments related to power systems protection.

9. Teaching and Learning Strategies

The Power Systems Protection module can be effectively taught using a variety of learning and teaching strategies. Some strategies that can be employed include:

- 1. Lectures: Conducting lectures to introduce and explain theoretical concepts, principles, and techniques related to power systems protection. Lectures can provide a foundational understanding of the subject matter and help students grasp the key concepts.
- 2. Interactive Discussions: Encouraging interactive discussions in the classroom to promote active learning and critical thinking. This can involve asking thought-provoking questions, facilitating group discussions, and encouraging students to share their insights and experiences related to power systems protection.
- 3. Case Studies: Incorporating case studies and real-world examples to demonstrate the practical application of power systems protection principles. Analyzing actual protection schemes, investigating system failures, and discussing lessons learned can enhance students' problem-solving abilities and provide them with practical insights.
- 4. Laboratory Exercises: Organizing laboratory sessions to allow students to gain hands-on experience with protection equipment, testing procedures, and fault analysis techniques. This practical exposure can enhance students' understanding of protection devices, system behavior, and fault diagnosis methods.
- 5. Simulations and Software Tools: Utilizing simulation software and tools to create virtual scenarios for protection system analysis, coordination studies, and fault simulations. This enables students to simulate and analyze different protection schemes, evaluate their performance, and understand the impact of various fault conditions.
- 6. Group Projects: Assigning group projects that involve designing and analyzing protection schemes for specific power system scenarios. This encourages teamwork, collaboration, and application of learned

concepts in a practical setting.

- 7. Guest Lectures and Industry Visits: Inviting guest lecturers from industry or organizing visits to power system facilities and control centers. This provides students with insights into real-world power systems protection practices, current industry trends, and technological advancements.
- 8. Assessments and Feedback: Conducting regular assessments, such as quizzes, assignments, and examinations, to evaluate students' understanding of the subject matter. Providing timely feedback on their performance helps students identify areas for improvement and reinforces their learning.
- 9. Online Resources and Materials: Making use of online resources, such as e-books, articles, video lectures, and simulation tools, to supplement classroom teaching and provide additional learning materials for self-study.

Continuous Professional Development: Encouraging students to engage in continuous professional development by attending conferences, workshops, and seminars related to power systems protection. This helps them stay updated with the latest advancements and industry practices.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Lab Introduction and Safety Procedures Introduction to the lab facilities and equipment. Overview of safety procedures and guidelines.	Introduction to Power Systems Protection Overview of power systems components and protection requirements. Importance of protection systems for system reliability and equipment safety. Historical development and evolution of power systems protection.	On-campus study	Quizzes
Week 2	5	Circuit Breaker Testing Familiarization with different types of circuit breakers. Hands-on testing and operation of circuit breakers. Analysis of circuit breaker characteristics and coordination.	Fault Analysis and System Modeling Types of faults in power systems and fault analysis techniques. Symmetrical components and per-unit system for fault analysis. Modeling of power system components for fault analysis.	On-campus study	Reports
Week 3	5	Protective Relay Testing Introduction to protective relays and their functions. Hands-on testing and calibration of protective relays. Verification of relay settings and coordination with circuit breakers.	Circuit Breakers and Protective Relays Types, operation principles, and coordination requirements of circuit breakers. Types and functions of protective relays in power system protection. Current transformers and voltage transformers for protection systems.	On-campus study	Assignments
Week 4	5	Current Transformer (CT) Testing	Transmission Line Protection Overview of transmission line	On-campus study	Quizzes

		Principles of current transformers and their role in protection systems. Testing and calibration of current transformers. Verification of CT performance and accuracy.	protection schemes. Distance protection: Principles and characteristics. Overcurrent and differential protection for transmission lines.		
Week 5	5	Voltage Transformer (VT) Testing Principles of voltage transformers and their role in protection systems. Testing and calibration of voltage transformers. Verification of VT performance and accuracy.	Generator and Transformer Protection Protection requirements for generators and transformers. Differential protection: Principles and application in generator and transformer protection. Overcurrent, overvoltage, and underfrequency protection for generators.	On-campus study	Reports
Week 6	5	Distance Protection Testing Introduction to distance protection principles and characteristics. Simulation of fault conditions and testing of distance relays. Analysis of relay responses and coordination with other protection devices.	Busbar and Substation Protection Busbar protection schemes: Differential, overcurrent, and directional comparison protection. Substation protection configurations and coordination considerations. Fault detection and protection for substation equipment.	On-campus study	Assignments
Week 7	5	Differential Protection Testing Principles and application of differential protection in power systems. Testing and analysis of differential relays for generators and transformers. Verification of differential protection scheme coordination.	Backup Protection and Coordination Principles of backup protection and its importance in system reliability. Coordination requirements and techniques for protective devices. Time-current coordination and selectivity considerations.	On-campus study	Quizzes
Week 8	5	Overcurrent Protection Testing Principles and settings of overcurrent protection schemes. Hands-on testing of overcurrent relays for transmission lines and equipment. Analysis of relay coordination and selectivity.	Emerging Technologies in Power Systems Protection Integration of renewable energy sources and their impact on protection systems. Smart grid technologies and their implications for protection schemes. Cybersecurity considerations and protection measures for power systems.	On-campus study	Reports
Week 9	5	Busbar Protection Testing Introduction to busbar	Fault Diagnosis and Troubleshooting	On-campus study	Assignments

		protection schemes and their operation. Testing and coordination of busbar protection relays. Verification of busbar protection performance and stability.	Analysis of fault records and event reports. Interpretation of relay operation data and fault location estimation. Techniques for fault diagnosis and identification of root causes.		
Week 10	5	Substation Protection Testing Testing and calibration of substation protection equipment (switchgear, capacitors, etc.). Analysis of substation protection coordination and fault detection. Troubleshooting and maintenance of substation protection systems.	Case Studies in Power Systems Protection Analysis and design of protection schemes for practical power system scenarios. Investigation of real-world protection system failures and lessons learned.	On-campus study	Quizzes
Week 11	5	Simulation Exercises Use of protection system simulation software for practical exercises. Simulating fault scenarios and analyzing protection system responses. Evaluation and optimization of protection coordination.	Protection System Simulation and Software Tools Introduction to protection system simulation software and tools. Simulation exercises for protection coordination and fault analysis.	On-campus study	Reports
Week 12	5	Fault Records Analysis Analysis of fault records and event reports from real power systems. Interpretation of relay operation data for fault diagnosis. Identification of root causes and troubleshooting techniques.	Ethical and Regulatory Considerations Ethical considerations in power systems protection. Environmental impact assessment and regulatory requirements.	On-campus study	Assignments
Week 13	5	Protection System Design Project Group project to design a protection scheme for a given power system scenario. Application of learned concepts, coordination studies, and relay settings. Presentation and evaluation of protection system designs.	Review and Revision Review of key concepts, principles, and techniques covered in the module. Practice exercises and discussions for reinforcement.	On-campus study	Quizzes
Week 14	5	Review and Revision Review of lab experiments, simulations, and project outcomes. Practice exercises and discussions for reinforcement.	Assessment Preparation Preparation for module assessments (quizzes, assignments, etc.). Clarification of doubts and additional practice as needed.	On-campus study	Reports

Week 15	5	Lab Assessment and Feedback Conducting lab assessments to evaluate practical skills and knowledge. Providing feedback on students' performance and addressing any outstanding questions.	Assessment and Feedback Conducting module assessments. Providing feedback on students' performance and addressing any outstanding questions.	On-campus study	Assignments
------------	---	--	--	--------------------	-------------

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

JV. K. Mehta, "Principles of Power Systems" 2nd ed., S. Chand & Company LTD.

B. Ram and D.N. Vishwakarma, "Power System Protection and Switchgear." New Delhi, India: McGraw Hill Education, 2014.

Course Description Form

1		T 1	7
	IIICA	1	ame:

Stability of Power Systems

2. Course Code:

EET4203

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the "Stability of Power System" module are as follows:

- 1. Understand the concept of stability in power systems: The module aims to provide an understanding of stability and its significance in power systems. It covers the different types of stability, such as steady-state stability and transient stability.
- 2. Study symmetrical components and sequence networks: The module focuses on the analysis of unbalanced conditions in power systems using symmetrical components and sequence networks. This includes understanding sequence impedances of synchronous machines, transmission lines, and transformers.
- 3. Analyze unsymmetrical faults: The module aims to teach the analysis of unsymmetrical faults, such as single line to ground faults, line to line faults, and double line to ground faults. It covers the behavior of power system components during these fault conditions using bus impedance matrices.
- 4. Explore stability problems and solutions: The module aims to delve into stability problems that can occur in power systems. It covers topics such as rotor dynamics, swing equations, and the equal-area criterion of stability. It also focuses on the numerical solution of swing equations.

Apply stability analysis to practical scenarios: The module aims to provide practical applications of stability analysis. It covers the application of the equal-area criterion to sudden large changes in load and three-phase faults. It helps students understand how stability analysis can be used to assess the stability of a power system in real-world situations.

9. Teaching and Learning Strategies

The "Stability of Power System" module can be taught using a variety of learning and teaching strategies to ensure a comprehensive understanding of the subject matter. Some effective strategies that can be employed are:

- 1. Lectures: In-class lectures can be used to deliver theoretical concepts, principles, and fundamental knowledge related to power system stability. Lectures can be supplemented with visual aids such as slides, diagrams, and animations to enhance understanding.
- 2. Practical Examples and Case Studies: Providing practical examples and case studies allows students to apply theoretical concepts to real-world scenarios. This can help them develop problem-solving skills and gain a deeper understanding of the practical implications of stability analysis.
- 3. Interactive Discussions: Encouraging students to participate in discussions can foster critical thinking and enhance their understanding of complex topics. Group discussions, debates, and brainstorming sessions can be organized to explore different perspectives and encourage peer-to-peer learning.
- 4. Simulations and Software Tools: Utilizing power system simulation software tools can provide hands-on experience in analyzing power system stability. Students can simulate various scenarios and observe the effects of stability problems, helping them gain practical skills in stability analysis.
- 5. Laboratory Sessions: Conducting laboratory sessions allows students to perform experiments and measurements related to power system stability. They can analyze data, interpret results, and draw conclusions, reinforcing their understanding of stability concepts.
- 6. Guest Lectures and Industry Experts: Inviting guest lecturers or industry experts who have practical experience in power system stability can provide valuable insights and real-world examples. They can share their experiences, discuss challenges, and highlight the importance of stability analysis in power system operation.
- 7. Assignments and Problem-Solving Exercises: Assigning problem-solving exercises and assignments helps students apply theoretical knowledge to solve practical stability problems. This can include analyzing system diagrams, calculating sequence impedances, and solving swing equations.
- 8. Assessments: Conducting quizzes, tests, and examinations can evaluate students' understanding of

the concepts covered in the module. These assessments can include both theoretical knowledge and problem-solving skills.

9. Online Resources and Learning Platforms: Providing access to online resources, such as e-books, videos, and interactive tutorials, can support self-paced learning and revision outside the classroom. Online learning platforms can also facilitate discussion forums and provide additional study materials. Continuous Feedback and Support: Offering regular feedback and support to students allows them to track their progress and address any difficulties they may encounter. This can be done through individual consultations, group feedback sessions, or online communication channels.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Lab Introduction and Safety Briefing. Familiarization with Power System Simulation Software.	Symmetrical Components Analysis: Introduction and Principles.	On-campus study	Quizzes
Week 2	5	Symmetrical Components Analysis: Positive Sequence Analysis. Simulation of Balanced Three- Phase System.	Symmetrical Components Analysis: Sequence Impedances.	On-campus study	Reports
Week 3	5	Symmetrical Components Analysis: Negative and Zero Sequence Analysis. Simulation of Unbalanced Faults and Sequence Networks.	Symmetrical Components Analysis: Sequence Networks.	On-campus study	Assignments
Week 4	5	Unsymmetrical Fault Analysis: Single Line to Ground Fault. Calculation of Fault Currents and Voltages.	Unsymmetrical Faults Analysis: Introduction and Single Line to Ground Fault.	On-campus study	Quizzes
Week 5	5	Unsymmetrical Fault Analysis: Line to Line Fault. Calculation of Fault Currents and Voltages. Unsymmetrical Fault Analysis: Double Line to Ground Fault. Calculation of Fault Currents and Voltages.	Unsymmetrical Faults Analysis: Line to Line Fault.	On-campus study	Reports
Week 6	5	Bus Impedance Matrix Calculation.	Unsymmetrical Faults Analysis: Double Line to Ground Fault.	On-campus study	Assignments
Week 7	5	Stability Problems: Swing Equation Simulation. Transient Stability Analysis.	Unsymmetrical Faults Using Bus Impedance Matrix.	On-campus study	Quizzes
Week 8	5	Stability Problems: Equal-Area Criterion Simulation. Application to Sudden Large Changes in Load.	Introduction to Power System Stability.	On-campus study	Reports
Week 9	5	Stability Problems: Equal-Area Criterion Simulation. Application to Three-Phase	Types of Stability: Steady-state Stability and Transient Stability.	On-campus study	Assignments

		Faults.			
Week 10	5	Numerical Solution of Swing Equation: Introduction to Numerical Methods. Simulation of Swing Equation using Numerical Techniques.	Stability Problems: Rotor Dynamics and Swing Equation.	On-campus study	Quizzes
Week 11	5	Advanced Stability Analysis: Voltage Stability Analysis. Simulation of Voltage Stability Issues.	Stability Problems: Factors Affecting Transient Stability.	On-campus study	Reports
Week 12	5	Advanced Stability Analysis: Small-Signal Stability Analysis. Modal Analysis and Eigenvalue Methods.	Stability Problems: Equal-Area Criterion of Stability.	On-campus study	Assignments
Week 13	5	Lab Review and Project Work. Preparation for Final Lab Assessment.	Stability Problems: Applications of Equal-Area Criterion to Sudden Large Change in Load.	On-campus study	Quizzes
Week 14	5	Lab Assessment: Practical Exam or Project Presentation.	Stability Problems: Applications of Equal-Area Criterion to Three-Phase Fault	On-campus study	Reports
Week 15	5	Lab Review and Wrap-Up. Feedback and Discussion on Lab Experience	Numerical Solution of Swing Equation.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	4, 10	LO #1, 2, 3, 6,7 and 9
Formative	Assignments	2	10% (10)	6, 12	LO # 4, 5 and 8
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

- P. Kundur, "Power System Stability and Control," 2nd ed. New York, NY, USA: McGraw-Hill, 1994.
- J. J. Grainger and W. D. Stevenson Jr., "Power Systems Analysis," 2nd ed. New York, NY: McGraw-Hill, 1994.
- J. D. Glover, M. S. Sarma, and T. J. Overbye, "Power System Analysis and Design," 6th ed. Boston, MA, USA: Cengage Learning, 2017.

Course Description Form

1. Course Name:

High Voltage Techniques

2. Course Code:

EET4204

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

Course administrator's name (mention all, if more than one name)

8. Course Objectives

The aims of the High Voltage Techniques module are typically as follows:

- 1. To provide students with a fundamental understanding of high voltage engineering principles and their applications.
- 2. To introduce students to various insulation materials used in high voltage systems and enable them to make informed decisions regarding material selection.
- 3. To familiarize students with the generation methods of high voltage and the equipment used for this purpose.
- 4. To develop students' knowledge and skills in high voltage measurements, including the use of appropriate instruments and techniques.
- 5. To provide students with an understanding of different high voltage testing methods and their importance in assessing insulation performance and safety.
- 6. To explore the phenomenon of parallel discharge and its impact on high voltage systems.
- 7. To develop students' knowledge of over voltages, their causes, and their effects on electrical equipment.
- 8. To introduce students to the characteristics of lightning phenomena and their relevance to high voltage systems.
- 9. To enhance students' understanding of insulation coordination and the importance of selecting compatible insulation systems for different components in a high voltage system.
- 10. To provide students with knowledge of the thermal characteristics of high voltage cables and the factors influencing their heat transfer and cooling.
- 11. To familiarize students with the insulation materials used in high voltage cables and their properties.

To develop students' understanding of high dielectric strength cables and their applications in high voltage systems.

9. Teaching and Learning Strategies

The High Voltage Techniques module can be delivered using a combination of learning and teaching strategies to ensure effective comprehension and skill development. Some suitable strategies for this module include:

- 1. Lectures: Traditional lectures can be used to introduce key theoretical concepts, principles, and techniques related to high voltage generation, measurement, testing, and overvoltage phenomena. Lectures can provide a foundation of knowledge and facilitate understanding of complex topics.
- 2. Practical Laboratory Sessions: Practical laboratory sessions are crucial for reinforcing theoretical concepts and developing hands-on skills. Students can engage in experiments and exercises that involve high voltage generation, measurement, and testing. This hands-on experience allows students to apply their knowledge in a controlled environment and gain practical insights into working with high voltages.
- 3. Case Studies and Real-World Examples: Integrating case studies and real-world examples into the teaching approach helps students understand how high voltage techniques are applied in practical situations. Analyzing actual cases and scenarios helps students develop problem-solving skills and enhances their ability to apply theoretical knowledge to real-life challenges.
- 4. Group Discussions and Debates: Organizing group discussions and debates encourages active participation and critical thinking. Students can discuss and debate topics related to high voltage techniques, share their perspectives, and engage in collaborative learning. This strategy promotes a deeper understanding of the subject matter and enhances communication and teamwork skills.
- 5. Interactive Demonstrations: Interactive demonstrations can be used to illustrate complex concepts and principles. This approach can involve using simulation software, interactive models, or physical demonstrations of high voltage phenomena. Interactive demonstrations help students visualize abstract concepts and foster a deeper understanding of the topic.
- 6. Guest Speakers and Industry Visits: Inviting guest speakers from relevant industries or arranging visits to high voltage facilities can provide students with insights into real-world applications and industry practices. Guest speakers can share their experiences, challenges, and advancements in high voltage techniques, providing valuable perspectives and enhancing students' understanding of the subject.
- 7. Self-Study and Research Assignments: Assigning self-study and research assignments encourages independent learning and allows students to explore specific aspects of high voltage techniques in depth. This strategy promotes critical thinking, research skills, and the ability to synthesize information from various sources.

Online Resources and Multimedia Materials: Utilizing online resources, multimedia materials, and interactive platforms can enhance engagement and provide additional learning opportunities. Students can access supplementary materials, video lectures, simulations, and online discussions to reinforce their understanding and explore high voltage techniques from different perspectives.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Lab Safety and Equipment Familiarization: Introduction to lab safety protocols when working with high voltages. Familiarization with high voltage equipment and their functions. Basic measurements using multimeters and oscilloscopes.	Introduction to High Voltage Techniques. Importance of high voltage generation and its applications. Overview of high voltage safety measures and regulations.	On-campus study	Quizzes
Week 2	5	DC High Voltage Generation and Measurement:	High Voltage Generation: DC Voltages.	On-campus	Reports

		Practical exercises on generating and measuring high DC voltages. Use of voltage dividers and multipliers. Measurement techniques for DC voltages.	Principles and methods of generating high DC voltages. Voltage multipliers and voltage dividers. Practical considerations in DC high voltage generation.	study	
Week 3	5	AC High Voltage Generation and Measurement: Hands-on activities on generating and measuring high AC voltages. Transformer-based voltage multiplication experiments. Measurement techniques for AC voltages.	Electrical Insulating Materials in High Voltage Functions and classification of insulating materials, Properties and characteristics of insulating materials. Conduction and Breakdown in Gases, Electrical conduction mechanisms in gases, Breakdown phenomena in gas insulation. Conduction and Breakdown in Liquid Dielectrics, Electrical conduction mechanisms in liquid dielectrics, Breakdown phenomena in liquid dielectrics. Breakdown in Solid Dielectrics, Breakdown mechanisms in solid dielectrics, Factors affecting breakdown strength in solid insulation. Insulation Coordination in Power Systems, Principles and importance of insulation coordination. Selection and compatibility of insulation systems in power systems. Insulation Materials Used in High Voltage Cables, Types of insulation materials used in high voltage cables, Properties and selection considerations for cable insulation.	On-campus study	Assignments
Week 4	5	Impulse High Voltage Generation and Measurement: Practical experiments on generating and measuring impulse voltages. Use of Marx generators and pulse forming networks. Measurement techniques for impulse voltages and currents.	High Voltage Generation: AC Voltages. Principles of high voltage AC generation. Transformer-based voltage multiplication. Resonant circuit methods for high voltage AC generation.	On-campus study	Quizzes
Week 5	5	Partial Discharge Measurements on Cables:	High Voltage Generation: Impulse Voltages and Currents,	On-campus study	Reports

		Techniques for measuring partial discharges in cables. Practical exercises on cable insulation testing. Analysis and interpretation of partial discharge measurement results.	Generation of impulse voltages and currents. Marx generators and pulse forming networks, Surge wave generators and their applications. High Voltage Measurement Techniques: DC Voltages and AC Voltages. Measurement principles and instruments for DC voltages and AC voltages. Calibration and accuracy considerations.		
Week 6	5	Circuit Breaker Testing: Hands-on exercises on testing circuit breakers for interrupting capabilities. Timing and synchronization tests. Analysis and interpretation of circuit breaker test results.	High Voltage Measurement Techniques: Impulse Voltages and Currents. Measurement principles and instruments for impulse voltages. Measurement principles and instruments for impulse currents. Introduction to cathode ray oscillographs for high voltage measurements.	On-campus study	Assignments
Week 7	5	Transformer Testing: Practical exercises on testing transformer insulation and performance. Ratio and polarity tests. Load and temperature rise tests. Analysis and interpretation of transformer test results.	High Voltage Testing: Cables. Insulation testing methods for cables. Partial discharge measurements. Testing procedures and interpretation of results.	On-campus study	Quizzes
Week 8	5	Surge Arrester Testing: Hands-on activities on testing surge arresters for performance. Protective characteristics testing. Leakage current and insulation coordination tests. Analysis and interpretation of surge arrester test results.	Testing methods for circuit breaker performance. Interrupting capability tests. Timing and synchronization tests. High Voltage Testing: Circuit Breakers.	On-campus study	Reports
Week 9	5	Lightning Phenomena Simulation: Simulating lightning phenomena and their effects on power systems. Lightning protection measures and grounding techniques.	High Voltage Testing: Transformers. Insulation testing methods for transformers. Transformer ratio and polarity tests. Load and temperature rise tests.	On-campus study	Assignments

Week 10	5	Switching Surges and Fault Simulation: Simulating switching surges and faults in power systems. Investigating overvoltages resulting from system faults. Mitigation techniques and protective devices.	High Voltage Testing: Surge Arresters. Testing methods for surge arrester performance. Protective characteristics testing. Leakage current and insulation coordination tests.	On-campus study	Quizzes
Week 11	5	Parallel Discharges and Corona Discharge Experiments: Practical exercises on parallel discharges and corona discharges. Observing the consequences of parallel discharges. Investigating corona discharge effects and mitigation measures.	Overvoltage Phenomena in Electric Power Systems: Lightning Phenomena. Causes and effects of lightning on power systems. Lightning protection measures and grounding techniques.	On-campus study	Reports
Week 12	5	Thermal Characteristics of High Voltage Cables: Hands-on experiments on thermal characteristics of cables. Heat transfer mechanisms in underground high voltage cables. Cooling techniques for managing cable temperatures.	Overvoltage Phenomena in Electric Power Systems: Switching Surges and Faults. Switching surge generation and effects. Overvoltages resulting from system faults. Mitigation techniques and protective devices.	On-campus study	Assignments
Week 13	5	Case Study Analysis: Analyzing real-world case studies related to high voltage techniques. Identifying challenges and proposing solutions based on acquired knowledge.	Overvoltage Phenomena in Electric Power Systems: Parallel Discharges and Corona Discharges. Causes and consequences of parallel discharges. Corona discharge effects and mitigation measures.	On-campus study	Quizzes
Week 14	5	Project Work: Collaborative project work related to high voltage techniques. Designing and conducting experiments, analyzing data, and presenting findings.	Thermal Characteristics and Cooling of High Voltage Cables. Thermal characteristics of cables and their implications. Heat transfer mechanisms in underground high voltage cables. Cooling techniques for managing cable temperatures.	On-campus study	Reports
Week 15	5	Lab Review and Wrap-up: Reviewing key lab concepts and techniques. Summarizing lab experiments and project outcomes. Preparing lab reports and final assessments.	Review and Revision. Summarizing key concepts and topics covered in the module. Reviewing important theories, techniques, and safety measures. Preparing for the final assessment.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	14	10% (10)	Continuous	All
	Report	14	10% (10)	Continuous	All
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

12. Learning and Teaching Resources

- M. S. Naidu and V. Kamaraju, "High voltage engineering," Tata McGraw Hill, 2013.
- C. L. Wadhwa, "High voltage Engineering," New Age International Publishers, 3rd ed., 2010.
- J. Kuffel and P. Kuffel, "High voltage engineering fundamentals," Elsevier, 2000.
- H. M. Ryan, Ed., "High voltage engineering and testing," IET, 2001.

Course Description Form

1.	Course Name:
Proje	ct 2
2.	Course Code:
EET4	205

3. Semester / Year:

First Semester of the Academic Year 2024–2025 – Bologna Process Track

4. Description Preparation Date:

17/7/2025

5. Available Attendance Forms:

On-campus study

6. Number of Credit Hours (Total) / Number of Units (Total)

125 H / 5 ECTS

7. Course administrator's name (mention all, if more than one name)

8. Course Objectives

The Project 2 module has several aims that contribute to the overall learning outcomes of the final year project. Some of the key aims of this module include:

- 1. Application of knowledge: The module aims to provide students with an opportunity to apply the theoretical knowledge and skills they have acquired throughout their studies. By working on their final year project, students can demonstrate their ability to transfer theoretical concepts into practical solutions or outcomes.
- 2. Independent learning and problem-solving: The module encourages students to take ownership of their projects and work independently. It aims to develop students' abilities to identify and define problems, formulate research questions or hypotheses, and devise appropriate methodologies to investigate them. This promotes critical thinking and problem-solving skills.
- 3. Project management and execution: The module aims to equip students with project management skills. It involves planning and organizing their project activities, setting realistic timelines, and effectively managing resources and constraints. Students gain experience in executing a project from start to finish, which is valuable for future professional endeavors.
- 4. Data collection and analysis: The module aims to develop students' competence in collecting and analyzing data. Students will have the opportunity to apply appropriate research methods, gather relevant data, and utilize statistical or qualitative analysis techniques to derive meaningful insights from their findings. This enhances their research and analytical skills.
- 5. Documentation and report writing: The module emphasizes the importance of documenting project progress and outcomes in a comprehensive final report. Students are expected to write a well-structured report that presents their research methodology, data analysis, results, and conclusions. This aims to enhance their technical writing skills and ability to communicate research findings effectively.
- 6. Presentation and communication skills: Students are required to prepare a presentation or demonstration to showcase their project outcomes. This aims to develop their communication skills and their ability to effectively present complex ideas or research findings to a wider audience. Students learn to convey their work in a clear, concise, and engaging manner.
- 7. Reflection and evaluation: The module encourages students to reflect on their project experience and evaluate their own performance. This promotes self-awareness, critical evaluation of their work, and identification of areas for improvement. Students can use this feedback and reflection to enhance their future projects or professional development.

9. Teaching and Learning Strategies

To facilitate effective learning and teaching in the Project 2 module on final year project execution and presentation in electrical engineering, a combination of various strategies can be employed. Here are some suggested learning and teaching strategies:

- 1. Lectures: Conduct interactive lectures to provide theoretical foundations, technical concepts, and best practices relevant to project execution and presentation. Encourage student engagement through discussions, questions, and real-world examples.
- 2. Practical Sessions: Organize hands-on practical sessions to allow students to apply their knowledge and skills in a simulated or real-world project environment. Provide guidance and supervision as they execute their projects, troubleshoot issues, and collect data.
- 3. Workshops and Seminars: Conduct workshops and seminars on topics such as data analysis techniques, effective presentation skills, research methodologies, and project management. Invite guest speakers or industry professionals to share their experiences and insights.
- 4. Group Discussions and Peer Learning: Encourage students to participate in group discussions and peer learning activities. Assign group projects or case studies where students can collaborate, share ideas, and learn from each other's experiences.
- 5. Mentorship and Guidance: Provide individual or group mentorship to students, where they can receive guidance and feedback on their project execution, data analysis, and presentation skills. Offer

regular feedback and support to ensure their progress and address any challenges.

- 6. Research and Literature Review: Guide students in conducting literature reviews to identify research gaps, relevant studies, and existing knowledge in their project area. Teach them how to critically analyze research papers, extract useful information, and apply it to their projects.
- 7. Technology and Tools Integration: Introduce students to relevant software tools, simulation platforms, data analysis software, and presentation tools commonly used in the field of electrical engineering. Provide training and support to help students effectively utilize these tools for their projects.
- 8. Project Management and Time Allocation: Teach students project management skills, including time management, task prioritization, and resource allocation. Help them develop a project plan, set achievable milestones, and monitor their progress throughout the module.
- 9. Peer Evaluation and Feedback: Incorporate peer evaluation and feedback mechanisms, where students provide constructive criticism and suggestions to their peers' project progress, reports, or presentations. This encourages collaborative learning and allows students to refine their work.
- 10. Reflective Practice and Self-Assessment: Encourage students to engage in reflective practice by regularly reflecting on their project progress, challenges faced, and lessons learned. Provide opportunities for self-assessment, allowing students to evaluate their own performance and set goals for improvement.
- 11. Assessment Variety: Utilize a variety of assessment methods, such as project reports, presentations, demonstrations, quizzes, and peer evaluations. This provides a comprehensive evaluation of students' understanding, application of knowledge, and project outcomes.
- 12. Ethical Considerations: Emphasize ethical considerations in project execution, data collection, and reporting. Discuss the importance of integrity, confidentiality, and responsible conduct in engineering research and project work.

Week	Hours	Required Learning	Unit or subject name	Learning	Evaluation
		Outcomes		method	method
Week 1	5	Introduction to the module objectives, learning outcomes, and assessment criteria. Overview of the final year project and its significance in the curriculum. Introduction to project topics and selection process.	Introduction to the module objectives, learning outcomes, and assessment criteria. Overview of the final year project and its significance in the curriculum. Introduction to project topics and selection process.	On-campus study	Quizzes
Week 2	5	Review of project proposals and topic selection by students. Guidance on refining project goals and methodologies based on feedback.	Review of project proposals and topic selection by students. Guidance on refining project goals and methodologies based on feedback.	On-campus study	Reports
Week 3	5	Lectures on project execution strategies and project management principles. Discussion on the importance of time management and resource allocation.	Lectures on project execution strategies and project management principles. Discussion on the importance of time management and resource allocation.	On-campus study	Assignments
Week 4	5	Practical session on implementing project methodologies or experimental setups. Troubleshooting common issues and challenges during	Practical session on implementing project methodologies or experimental setups. Troubleshooting common issues and challenges during	On-campus study	Quizzes

		project execution.	project execution.		
Week 5	5	Workshop on data collection techniques and measurement principles. Practice in data collection using appropriate instrumentation or simulation tools.	Workshop on data collection techniques and measurement principles. Practice in data collection using appropriate instrumentation or simulation tools.	On-campus study	Reports
Week 6	5	Lectures on data analysis methods and statistical techniques. Application of data analysis to project datasets.	Lectures on data analysis methods and statistical techniques. Application of data analysis to project datasets.	On-campus study	Assignments
Week 7	5	Discussion on the engineering and scientific implications of project findings. Examination of potential applications and impact of the project outcomes.	Discussion on the engineering and scientific implications of project findings. Examination of potential applications and impact of the project outcomes.	On-campus study	Quizzes
Week 8	5	Practical session on project documentation and report writing. Guidance on proper citation and referencing using IEEE style.	Practical session on project documentation and report writing. Guidance on proper citation and referencing using IEEE style.	On-campus study	Reports
Week 9	5	Workshop on effective presentation skills and techniques. Preparation of project presentations and demonstrations.	Workshop on effective presentation skills and techniques. Preparation of project presentations and demonstrations.	On-campus study	Assignments
Week 10	5	Presentation and demonstration sessions for students to showcase their projects. Peer evaluation and feedback on the presentations.	Presentation and demonstration sessions for students to showcase their projects. Peer evaluation and feedback on the presentations.	On-campus study	Quizzes
Week 11	5	Reflection and self-assessment activities on project progress and learning outcomes. Identification of areas for improvement and setting goals for the remaining weeks.	Reflection and self-assessment activities on project progress and learning outcomes. Identification of areas for improvement and setting goals for the remaining weeks.	On-campus study	Reports
Week 12	5	Continued execution of projects and data analysis, if necessary. Mentoring and guidance sessions to address individual project challenges.	Continued execution of projects and data analysis, if necessary. Mentoring and guidance sessions to address individual project challenges.	On-campus study	Assignments
Week 13	5	Completion of project documentation and final report writing. Peer review of project reports to provide constructive feedback.	Completion of project documentation and final report writing. Peer review of project reports to provide constructive feedback.	On-campus study	Quizzes
Week	5	Final revisions and polishing of	Final revisions and polishing of	On-campus	Reports

14		project reports and presentations. Practice sessions for final project presentations.	project reports and presentations. Practice sessions for final project presentations.	study	
Week 15	5	Preparatory week before the final Exam.	Preparatory week before the final Exam.	On-campus study	Assignments

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 8 and 9
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	14	LO # 1-14
Summative	Midterm Exam	1 hours	10% (10)	7	LO # 1-7
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

12. Learning and Teaching Resources

C. L. Rethlefsen and R. E. Karper, "Engineering Research: Planning, Writing, and Presenting," 2nd ed. New York, NY, USA: Taylor & Francis, 2019.

D. S. Viswanath, "Research Methods for Engineers," 2nd ed. Boca Raton, FL, USA: CRC Press, 2018.